Update app_flash.py
Browse files- app_flash.py +12 -18
app_flash.py
CHANGED
|
@@ -1,21 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer
|
| 3 |
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
|
| 4 |
-
from transformers import AutoModelForCausalLM
|
| 5 |
|
| 6 |
# ============================================================
|
| 7 |
-
# 1️⃣ FlashPack-enabled model class
|
| 8 |
# ============================================================
|
| 9 |
class FlashPackGemmaModel(AutoModelForCausalLM, FlashPackTransformersModelMixin):
|
|
|
|
| 10 |
pass
|
| 11 |
|
| 12 |
# ============================================================
|
| 13 |
-
# 2️⃣
|
| 14 |
# ============================================================
|
| 15 |
MODEL_ID = "gokaygokay/prompt-enhancer-gemma-3-270m-it"
|
| 16 |
FLASHPACK_REPO = "rahul7star/FlashPack"
|
| 17 |
|
| 18 |
-
# Load tokenizer
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 20 |
|
| 21 |
# ============================================================
|
|
@@ -25,17 +25,15 @@ try:
|
|
| 25 |
print("📂 Loading model from FlashPack repository...")
|
| 26 |
model = FlashPackGemmaModel.from_pretrained_flashpack(FLASHPACK_REPO)
|
| 27 |
except FileNotFoundError:
|
| 28 |
-
print("⚠️ FlashPack model not found
|
| 29 |
-
# Load from HF Hub
|
| 30 |
model = FlashPackGemmaModel.from_pretrained(MODEL_ID)
|
| 31 |
-
# Save as FlashPack directly to Hub
|
| 32 |
model.save_pretrained_flashpack(FLASHPACK_REPO, push_to_hub=True)
|
| 33 |
-
print(f"✅
|
| 34 |
|
| 35 |
# ============================================================
|
| 36 |
-
# 4️⃣
|
| 37 |
# ============================================================
|
| 38 |
-
pipe =
|
| 39 |
"text-generation",
|
| 40 |
model=model,
|
| 41 |
tokenizer=tokenizer,
|
|
@@ -43,30 +41,26 @@ pipe = pipeline(
|
|
| 43 |
)
|
| 44 |
|
| 45 |
# ============================================================
|
| 46 |
-
# 5️⃣
|
| 47 |
# ============================================================
|
| 48 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 49 |
chat_history = chat_history or []
|
| 50 |
|
| 51 |
-
# Build messages
|
| 52 |
messages = [
|
| 53 |
{"role": "system", "content": "Enhance and expand the following prompt with more details and context:"},
|
| 54 |
{"role": "user", "content": user_prompt},
|
| 55 |
]
|
| 56 |
|
| 57 |
-
# Apply chat-template
|
| 58 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 59 |
|
| 60 |
-
# Generate output
|
| 61 |
outputs = pipe(
|
| 62 |
prompt,
|
| 63 |
max_new_tokens=int(max_tokens),
|
| 64 |
temperature=float(temperature),
|
| 65 |
-
do_sample=True
|
| 66 |
)
|
| 67 |
enhanced = outputs[0]["generated_text"].strip()
|
| 68 |
|
| 69 |
-
# Update chat history
|
| 70 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 71 |
chat_history.append({"role": "assistant", "content": enhanced})
|
| 72 |
return chat_history
|
|
@@ -96,7 +90,7 @@ with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft())
|
|
| 96 |
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
|
| 97 |
clear_btn = gr.Button("🧹 Clear Chat")
|
| 98 |
|
| 99 |
-
# Bind actions
|
| 100 |
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 101 |
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 102 |
clear_btn.click(lambda: [], None, chatbot)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
|
| 4 |
+
from transformers import AutoModelForCausalLM, pipeline as hf_pipeline
|
| 5 |
|
| 6 |
# ============================================================
|
| 7 |
+
# 1️⃣ Define FlashPack-enabled model class
|
| 8 |
# ============================================================
|
| 9 |
class FlashPackGemmaModel(AutoModelForCausalLM, FlashPackTransformersModelMixin):
|
| 10 |
+
"""Gemma 3 model wrapped with FlashPackTransformersModelMixin"""
|
| 11 |
pass
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
+
# 2️⃣ Load tokenizer
|
| 15 |
# ============================================================
|
| 16 |
MODEL_ID = "gokaygokay/prompt-enhancer-gemma-3-270m-it"
|
| 17 |
FLASHPACK_REPO = "rahul7star/FlashPack"
|
| 18 |
|
|
|
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 20 |
|
| 21 |
# ============================================================
|
|
|
|
| 25 |
print("📂 Loading model from FlashPack repository...")
|
| 26 |
model = FlashPackGemmaModel.from_pretrained_flashpack(FLASHPACK_REPO)
|
| 27 |
except FileNotFoundError:
|
| 28 |
+
print("⚠️ FlashPack model not found. Loading from HF Hub and uploading FlashPack...")
|
|
|
|
| 29 |
model = FlashPackGemmaModel.from_pretrained(MODEL_ID)
|
|
|
|
| 30 |
model.save_pretrained_flashpack(FLASHPACK_REPO, push_to_hub=True)
|
| 31 |
+
print(f"✅ FlashPack model uploaded to Hugging Face Hub: {FLASHPACK_REPO}")
|
| 32 |
|
| 33 |
# ============================================================
|
| 34 |
+
# 4️⃣ Build text-generation pipeline
|
| 35 |
# ============================================================
|
| 36 |
+
pipe = hf_pipeline(
|
| 37 |
"text-generation",
|
| 38 |
model=model,
|
| 39 |
tokenizer=tokenizer,
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
# ============================================================
|
| 44 |
+
# 5️⃣ Define prompt enhancement function
|
| 45 |
# ============================================================
|
| 46 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 47 |
chat_history = chat_history or []
|
| 48 |
|
|
|
|
| 49 |
messages = [
|
| 50 |
{"role": "system", "content": "Enhance and expand the following prompt with more details and context:"},
|
| 51 |
{"role": "user", "content": user_prompt},
|
| 52 |
]
|
| 53 |
|
|
|
|
| 54 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 55 |
|
|
|
|
| 56 |
outputs = pipe(
|
| 57 |
prompt,
|
| 58 |
max_new_tokens=int(max_tokens),
|
| 59 |
temperature=float(temperature),
|
| 60 |
+
do_sample=True
|
| 61 |
)
|
| 62 |
enhanced = outputs[0]["generated_text"].strip()
|
| 63 |
|
|
|
|
| 64 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 65 |
chat_history.append({"role": "assistant", "content": enhanced})
|
| 66 |
return chat_history
|
|
|
|
| 90 |
send_btn = gr.Button("🚀 Enhance Prompt", variant="primary")
|
| 91 |
clear_btn = gr.Button("🧹 Clear Chat")
|
| 92 |
|
| 93 |
+
# Bind UI actions
|
| 94 |
send_btn.click(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 95 |
user_prompt.submit(enhance_prompt, [user_prompt, temperature, max_tokens, chatbot], chatbot)
|
| 96 |
clear_btn.click(lambda: [], None, chatbot)
|