Spaces:
Paused
Paused
Update app_quant.py
Browse files- app_quant.py +138 -32
app_quant.py
CHANGED
|
@@ -1,33 +1,77 @@
|
|
| 1 |
import torch
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 6 |
from diffusers import ZImagePipeline, AutoModel
|
| 7 |
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 8 |
|
| 9 |
# ============================================================
|
| 10 |
-
#
|
| 11 |
# ============================================================
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# ============================================================
|
| 18 |
-
#
|
| 19 |
# ============================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
if torch.cuda.is_available():
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
else:
|
| 25 |
-
raise RuntimeError("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# ============================================================
|
| 28 |
-
#
|
| 29 |
# ============================================================
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
quantization_config = DiffusersBitsAndBytesConfig(
|
| 32 |
load_in_4bit=True,
|
| 33 |
bnb_4bit_quant_type="nf4",
|
|
@@ -35,6 +79,10 @@ quantization_config = DiffusersBitsAndBytesConfig(
|
|
| 35 |
bnb_4bit_use_double_quant=True,
|
| 36 |
llm_int8_skip_modules=["transformer_blocks.0.img_mod"],
|
| 37 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
transformer = AutoModel.from_pretrained(
|
| 39 |
model_id,
|
| 40 |
cache_dir=model_cache,
|
|
@@ -43,21 +91,47 @@ transformer = AutoModel.from_pretrained(
|
|
| 43 |
torch_dtype=torch_dtype,
|
| 44 |
device_map=device,
|
| 45 |
)
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
if USE_CPU_OFFLOAD:
|
| 49 |
transformer = transformer.to("cpu")
|
| 50 |
|
| 51 |
# ============================================================
|
| 52 |
-
#
|
| 53 |
# ============================================================
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
quantization_config = TransformersBitsAndBytesConfig(
|
| 56 |
load_in_4bit=True,
|
| 57 |
bnb_4bit_quant_type="nf4",
|
| 58 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 59 |
bnb_4bit_use_double_quant=True,
|
| 60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
text_encoder = AutoModel.from_pretrained(
|
| 62 |
model_id,
|
| 63 |
cache_dir=model_cache,
|
|
@@ -66,15 +140,35 @@ text_encoder = AutoModel.from_pretrained(
|
|
| 66 |
torch_dtype=torch_dtype,
|
| 67 |
device_map=device,
|
| 68 |
)
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
if USE_CPU_OFFLOAD:
|
| 72 |
text_encoder = text_encoder.to("cpu")
|
| 73 |
|
| 74 |
# ============================================================
|
| 75 |
-
#
|
| 76 |
# ============================================================
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
pipe = ZImagePipeline.from_pretrained(
|
| 79 |
model_id,
|
| 80 |
transformer=transformer,
|
|
@@ -84,19 +178,33 @@ pipe = ZImagePipeline.from_pretrained(
|
|
| 84 |
|
| 85 |
if USE_CPU_OFFLOAD:
|
| 86 |
pipe.enable_model_cpu_offload(gpu_id=gpu_id)
|
| 87 |
-
|
| 88 |
else:
|
| 89 |
pipe.to(device)
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# ============================================================
|
| 93 |
-
#
|
| 94 |
# ============================================================
|
| 95 |
@spaces.GPU
|
| 96 |
def generate_image(prompt, height, width, steps, seed):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
generator = torch.Generator(device).manual_seed(seed)
|
| 98 |
-
|
| 99 |
-
|
| 100 |
prompt=prompt,
|
| 101 |
height=height,
|
| 102 |
width=width,
|
|
@@ -105,14 +213,14 @@ def generate_image(prompt, height, width, steps, seed):
|
|
| 105 |
generator=generator,
|
| 106 |
)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
# ============================================================
|
| 112 |
-
#
|
| 113 |
# ============================================================
|
| 114 |
with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
|
| 115 |
-
gr.Markdown("#
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
with gr.Column(scale=1):
|
|
@@ -123,17 +231,15 @@ with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
|
|
| 123 |
seed = gr.Slider(0, 999999, value=42, step=1, label="Seed")
|
| 124 |
|
| 125 |
btn = gr.Button("Generate", variant="primary")
|
| 126 |
-
|
| 127 |
with gr.Column(scale=1):
|
| 128 |
output_image = gr.Image(label="Output Image")
|
|
|
|
| 129 |
|
| 130 |
btn.click(
|
| 131 |
generate_image,
|
| 132 |
inputs=[prompt, height, width, steps, seed],
|
| 133 |
-
outputs=[output_image],
|
| 134 |
)
|
| 135 |
|
| 136 |
-
# ============================================================
|
| 137 |
-
# Launch
|
| 138 |
-
# ============================================================
|
| 139 |
demo.launch()
|
|
|
|
| 1 |
import torch
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
+
import sys
|
| 5 |
+
import platform
|
| 6 |
+
import os
|
| 7 |
+
import diffusers
|
| 8 |
+
import transformers
|
| 9 |
+
import peft
|
| 10 |
|
| 11 |
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 12 |
from diffusers import ZImagePipeline, AutoModel
|
| 13 |
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 14 |
|
| 15 |
# ============================================================
|
| 16 |
+
# LOGGING BUFFER
|
| 17 |
# ============================================================
|
| 18 |
+
LOGS = ""
|
| 19 |
+
|
| 20 |
+
def log(msg):
|
| 21 |
+
global LOGS
|
| 22 |
+
print(msg)
|
| 23 |
+
LOGS += msg + "\n"
|
| 24 |
+
return msg
|
| 25 |
|
| 26 |
# ============================================================
|
| 27 |
+
# ENVIRONMENT INFO
|
| 28 |
# ============================================================
|
| 29 |
+
log("===================================================")
|
| 30 |
+
log("π Z-IMAGE-TURBO DEBUGGING + DETAILED TRANSFORMER INSIGHTS")
|
| 31 |
+
log("===================================================\n")
|
| 32 |
+
|
| 33 |
+
log(f"π PYTHON VERSION : {sys.version.replace(chr(10), ' ')}")
|
| 34 |
+
log(f"π PLATFORM : {platform.platform()}")
|
| 35 |
+
log(f"π TORCH VERSION : {torch.__version__}")
|
| 36 |
+
log(f"π TRANSFORMERS VERSION : {transformers.__version__}")
|
| 37 |
+
log(f"π DIFFUSERS VERSION : {diffusers.__version__}")
|
| 38 |
+
log(f"π PEFT VERSION : {peft.__version__}")
|
| 39 |
+
log(f"π CUDA AVAILABLE : {torch.cuda.is_available()}")
|
| 40 |
+
|
| 41 |
if torch.cuda.is_available():
|
| 42 |
+
log(f"π GPU NAME : {torch.cuda.get_device_name(0)}")
|
| 43 |
+
log(f"π GPU CAPABILITY : {torch.cuda.get_device_capability(0)}")
|
| 44 |
+
log(f"π GPU MEMORY (TOTAL) : {torch.cuda.get_device_properties(0).total_memory/1e9:.2f} GB")
|
| 45 |
+
log(f"π FLASH ATTENTION : {torch.backends.cuda.flash_sdp_enabled()}")
|
| 46 |
else:
|
| 47 |
+
raise RuntimeError("β CUDA is REQUIRED but not available.")
|
| 48 |
+
|
| 49 |
+
device = "cuda"
|
| 50 |
+
gpu_id = 0
|
| 51 |
+
|
| 52 |
+
# ============================================================
|
| 53 |
+
# MODEL SETTINGS
|
| 54 |
+
# ============================================================
|
| 55 |
+
model_cache = "./weights/"
|
| 56 |
+
model_id = "Tongyi-MAI/Z-Image-Turbo"
|
| 57 |
+
torch_dtype = torch.bfloat16
|
| 58 |
+
USE_CPU_OFFLOAD = False
|
| 59 |
+
|
| 60 |
+
log("\n===================================================")
|
| 61 |
+
log("π§ MODEL CONFIGURATION")
|
| 62 |
+
log("===================================================")
|
| 63 |
+
log(f"Model ID : {model_id}")
|
| 64 |
+
log(f"Model Cache Directory : {model_cache}")
|
| 65 |
+
log(f"torch_dtype : {torch_dtype}")
|
| 66 |
+
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
|
| 67 |
|
| 68 |
# ============================================================
|
| 69 |
+
# LOAD TRANSFORMER BLOCK
|
| 70 |
# ============================================================
|
| 71 |
+
log("\n===================================================")
|
| 72 |
+
log("π§ LOADING TRANSFORMER BLOCK")
|
| 73 |
+
log("===================================================")
|
| 74 |
+
|
| 75 |
quantization_config = DiffusersBitsAndBytesConfig(
|
| 76 |
load_in_4bit=True,
|
| 77 |
bnb_4bit_quant_type="nf4",
|
|
|
|
| 79 |
bnb_4bit_use_double_quant=True,
|
| 80 |
llm_int8_skip_modules=["transformer_blocks.0.img_mod"],
|
| 81 |
)
|
| 82 |
+
|
| 83 |
+
log("4-bit Quantization Config (Transformer):")
|
| 84 |
+
log(str(quantization_config))
|
| 85 |
+
|
| 86 |
transformer = AutoModel.from_pretrained(
|
| 87 |
model_id,
|
| 88 |
cache_dir=model_cache,
|
|
|
|
| 91 |
torch_dtype=torch_dtype,
|
| 92 |
device_map=device,
|
| 93 |
)
|
| 94 |
+
log("β
Transformer block loaded successfully.")
|
| 95 |
+
|
| 96 |
+
# ------------------------------------------------------------
|
| 97 |
+
# TRANSFORMER INSIGHTS
|
| 98 |
+
# ------------------------------------------------------------
|
| 99 |
+
log("π Transformer Architecture Details:")
|
| 100 |
+
log(f"Number of Transformer Modules : {len(transformer.transformer_blocks)}")
|
| 101 |
+
for i, block in enumerate(transformer.transformer_blocks):
|
| 102 |
+
log(f" Block {i}: {block.__class__.__name__}")
|
| 103 |
+
# Log attention type if possible
|
| 104 |
+
attn_type = getattr(block, "attn", None)
|
| 105 |
+
if attn_type:
|
| 106 |
+
log(f" Attention: {attn_type.__class__.__name__}")
|
| 107 |
+
# Check for FlashAttention usage if attribute exists
|
| 108 |
+
flash_enabled = getattr(attn_type, "flash", None)
|
| 109 |
+
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 110 |
+
log(f"Hidden size: {transformer.config.hidden_size}")
|
| 111 |
+
log(f"Number of attention heads: {transformer.config.num_attention_heads}")
|
| 112 |
+
log(f"Number of layers: {transformer.config.num_hidden_layers}")
|
| 113 |
+
log(f"Intermediate size: {transformer.config.intermediate_size}")
|
| 114 |
|
| 115 |
if USE_CPU_OFFLOAD:
|
| 116 |
transformer = transformer.to("cpu")
|
| 117 |
|
| 118 |
# ============================================================
|
| 119 |
+
# LOAD TEXT ENCODER
|
| 120 |
# ============================================================
|
| 121 |
+
log("\n===================================================")
|
| 122 |
+
log("π§ LOADING TEXT ENCODER")
|
| 123 |
+
log("===================================================")
|
| 124 |
+
|
| 125 |
quantization_config = TransformersBitsAndBytesConfig(
|
| 126 |
load_in_4bit=True,
|
| 127 |
bnb_4bit_quant_type="nf4",
|
| 128 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 129 |
bnb_4bit_use_double_quant=True,
|
| 130 |
)
|
| 131 |
+
|
| 132 |
+
log("4-bit Quantization Config (Text Encoder):")
|
| 133 |
+
log(str(quantization_config))
|
| 134 |
+
|
| 135 |
text_encoder = AutoModel.from_pretrained(
|
| 136 |
model_id,
|
| 137 |
cache_dir=model_cache,
|
|
|
|
| 140 |
torch_dtype=torch_dtype,
|
| 141 |
device_map=device,
|
| 142 |
)
|
| 143 |
+
log("β
Text encoder loaded successfully.")
|
| 144 |
+
|
| 145 |
+
# ------------------------------------------------------------
|
| 146 |
+
# TEXT ENCODER INSIGHTS
|
| 147 |
+
# ------------------------------------------------------------
|
| 148 |
+
log("π Text Encoder Architecture Details:")
|
| 149 |
+
log(f"Number of Transformer Modules : {len(text_encoder.transformer_blocks)}")
|
| 150 |
+
for i, block in enumerate(text_encoder.transformer_blocks):
|
| 151 |
+
log(f" Block {i}: {block.__class__.__name__}")
|
| 152 |
+
attn_type = getattr(block, "attn", None)
|
| 153 |
+
if attn_type:
|
| 154 |
+
log(f" Attention: {attn_type.__class__.__name__}")
|
| 155 |
+
flash_enabled = getattr(attn_type, "flash", None)
|
| 156 |
+
log(f" FlashAttention Enabled? : {flash_enabled}")
|
| 157 |
+
log(f"Hidden size: {text_encoder.config.hidden_size}")
|
| 158 |
+
log(f"Number of attention heads: {text_encoder.config.num_attention_heads}")
|
| 159 |
+
log(f"Number of layers: {text_encoder.config.num_hidden_layers}")
|
| 160 |
+
log(f"Intermediate size: {text_encoder.config.intermediate_size}")
|
| 161 |
|
| 162 |
if USE_CPU_OFFLOAD:
|
| 163 |
text_encoder = text_encoder.to("cpu")
|
| 164 |
|
| 165 |
# ============================================================
|
| 166 |
+
# BUILD PIPELINE
|
| 167 |
# ============================================================
|
| 168 |
+
log("\n===================================================")
|
| 169 |
+
log("π§ BUILDING Z-IMAGE-TURBO PIPELINE")
|
| 170 |
+
log("===================================================")
|
| 171 |
+
|
| 172 |
pipe = ZImagePipeline.from_pretrained(
|
| 173 |
model_id,
|
| 174 |
transformer=transformer,
|
|
|
|
| 178 |
|
| 179 |
if USE_CPU_OFFLOAD:
|
| 180 |
pipe.enable_model_cpu_offload(gpu_id=gpu_id)
|
| 181 |
+
log("β CPU OFFLOAD ENABLED")
|
| 182 |
else:
|
| 183 |
pipe.to(device)
|
| 184 |
+
log("β Pipeline moved to GPU")
|
| 185 |
+
|
| 186 |
+
log("β
Pipeline ready.")
|
| 187 |
|
| 188 |
# ============================================================
|
| 189 |
+
# INFERENCE FUNCTION
|
| 190 |
# ============================================================
|
| 191 |
@spaces.GPU
|
| 192 |
def generate_image(prompt, height, width, steps, seed):
|
| 193 |
+
global LOGS
|
| 194 |
+
LOGS = "" # Reset logs for this run
|
| 195 |
+
|
| 196 |
+
log("===================================================")
|
| 197 |
+
log("π¨ RUNNING INFERENCE")
|
| 198 |
+
log("===================================================")
|
| 199 |
+
|
| 200 |
+
log(f"Prompt : {prompt}")
|
| 201 |
+
log(f"Resolution : {width} x {height}")
|
| 202 |
+
log(f"Steps : {steps}")
|
| 203 |
+
log(f"Seed : {seed}")
|
| 204 |
+
|
| 205 |
generator = torch.Generator(device).manual_seed(seed)
|
| 206 |
+
|
| 207 |
+
out = pipe(
|
| 208 |
prompt=prompt,
|
| 209 |
height=height,
|
| 210 |
width=width,
|
|
|
|
| 213 |
generator=generator,
|
| 214 |
)
|
| 215 |
|
| 216 |
+
log("β
Inference Finished")
|
| 217 |
+
return out.images[0], LOGS
|
| 218 |
|
| 219 |
# ============================================================
|
| 220 |
+
# GRADIO UI
|
| 221 |
# ============================================================
|
| 222 |
with gr.Blocks(title="Z-Image-Turbo Generator") as demo:
|
| 223 |
+
gr.Markdown("# **π Z-Image-Turbo β Transformer Deep Logs**")
|
| 224 |
|
| 225 |
with gr.Row():
|
| 226 |
with gr.Column(scale=1):
|
|
|
|
| 231 |
seed = gr.Slider(0, 999999, value=42, step=1, label="Seed")
|
| 232 |
|
| 233 |
btn = gr.Button("Generate", variant="primary")
|
| 234 |
+
|
| 235 |
with gr.Column(scale=1):
|
| 236 |
output_image = gr.Image(label="Output Image")
|
| 237 |
+
logs_panel = gr.Textbox(label="π Transformer Logs", lines=25, interactive=False)
|
| 238 |
|
| 239 |
btn.click(
|
| 240 |
generate_image,
|
| 241 |
inputs=[prompt, height, width, steps, seed],
|
| 242 |
+
outputs=[output_image, logs_panel],
|
| 243 |
)
|
| 244 |
|
|
|
|
|
|
|
|
|
|
| 245 |
demo.launch()
|