Spaces:
Running
on
Zero
Running
on
Zero
Upload 27 files
Browse files- .gitignore +182 -0
- README.md +87 -0
- diffusers_helper/bucket_tools.py +94 -0
- diffusers_helper/clip_vision.py +12 -0
- diffusers_helper/dit_common.py +53 -0
- diffusers_helper/gradio/progress_bar.py +86 -0
- diffusers_helper/hf_login.py +21 -0
- diffusers_helper/hunyuan.py +111 -0
- diffusers_helper/k_diffusion/uni_pc_fm.py +141 -0
- diffusers_helper/k_diffusion/wrapper.py +51 -0
- diffusers_helper/lora_utils.py +131 -0
- diffusers_helper/memory.py +134 -0
- diffusers_helper/models/hunyuan_video_packed.py +1032 -0
- diffusers_helper/pipelines/k_diffusion_hunyuan.py +120 -0
- diffusers_helper/thread_utils.py +76 -0
- diffusers_helper/utils.py +613 -0
- modules/__init__.py +2 -0
- modules/generators/__init__.py +23 -0
- modules/generators/base_generator.py +228 -0
- modules/generators/f1_generator.py +219 -0
- modules/generators/original_generator.py +202 -0
- modules/interface.py +771 -0
- modules/prompt_handler.py +164 -0
- modules/settings.py +76 -0
- modules/video_queue.py +341 -0
- requirements.txt +17 -0
- studio.py +1012 -0
.gitignore
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hf_download/
|
2 |
+
outputs/
|
3 |
+
repo/
|
4 |
+
loras/
|
5 |
+
queue.json
|
6 |
+
settings.json
|
7 |
+
# Byte-compiled / optimized / DLL files
|
8 |
+
__pycache__/
|
9 |
+
*.py[cod]
|
10 |
+
*$py.class
|
11 |
+
|
12 |
+
# C extensions
|
13 |
+
*.so
|
14 |
+
|
15 |
+
# Distribution / packaging
|
16 |
+
.Python
|
17 |
+
build/
|
18 |
+
develop-eggs/
|
19 |
+
dist/
|
20 |
+
downloads/
|
21 |
+
eggs/
|
22 |
+
.eggs/
|
23 |
+
lib/
|
24 |
+
lib64/
|
25 |
+
parts/
|
26 |
+
sdist/
|
27 |
+
var/
|
28 |
+
wheels/
|
29 |
+
share/python-wheels/
|
30 |
+
*.egg-info/
|
31 |
+
.installed.cfg
|
32 |
+
*.egg
|
33 |
+
MANIFEST
|
34 |
+
|
35 |
+
# PyInstaller
|
36 |
+
# Usually these files are written by a python script from a template
|
37 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
38 |
+
*.manifest
|
39 |
+
*.spec
|
40 |
+
|
41 |
+
# Installer logs
|
42 |
+
pip-log.txt
|
43 |
+
pip-delete-this-directory.txt
|
44 |
+
|
45 |
+
# Unit test / coverage reports
|
46 |
+
htmlcov/
|
47 |
+
.tox/
|
48 |
+
.nox/
|
49 |
+
.coverage
|
50 |
+
.coverage.*
|
51 |
+
.cache
|
52 |
+
nosetests.xml
|
53 |
+
coverage.xml
|
54 |
+
*.cover
|
55 |
+
*.py,cover
|
56 |
+
.hypothesis/
|
57 |
+
.pytest_cache/
|
58 |
+
cover/
|
59 |
+
|
60 |
+
# Translations
|
61 |
+
*.mo
|
62 |
+
*.pot
|
63 |
+
|
64 |
+
# Django stuff:
|
65 |
+
*.log
|
66 |
+
local_settings.py
|
67 |
+
db.sqlite3
|
68 |
+
db.sqlite3-journal
|
69 |
+
|
70 |
+
# Flask stuff:
|
71 |
+
instance/
|
72 |
+
.webassets-cache
|
73 |
+
|
74 |
+
# Scrapy stuff:
|
75 |
+
.scrapy
|
76 |
+
|
77 |
+
# Sphinx documentation
|
78 |
+
docs/_build/
|
79 |
+
|
80 |
+
# PyBuilder
|
81 |
+
.pybuilder/
|
82 |
+
target/
|
83 |
+
|
84 |
+
# Jupyter Notebook
|
85 |
+
.ipynb_checkpoints
|
86 |
+
|
87 |
+
# IPython
|
88 |
+
profile_default/
|
89 |
+
ipython_config.py
|
90 |
+
|
91 |
+
# pyenv
|
92 |
+
# For a library or package, you might want to ignore these files since the code is
|
93 |
+
# intended to run in multiple environments; otherwise, check them in:
|
94 |
+
# .python-version
|
95 |
+
|
96 |
+
# pipenv
|
97 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
98 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
99 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
100 |
+
# install all needed dependencies.
|
101 |
+
#Pipfile.lock
|
102 |
+
|
103 |
+
# UV
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
#uv.lock
|
108 |
+
|
109 |
+
# poetry
|
110 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
111 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
112 |
+
# commonly ignored for libraries.
|
113 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
114 |
+
#poetry.lock
|
115 |
+
|
116 |
+
# pdm
|
117 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
118 |
+
#pdm.lock
|
119 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
120 |
+
# in version control.
|
121 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
122 |
+
.pdm.toml
|
123 |
+
.pdm-python
|
124 |
+
.pdm-build/
|
125 |
+
|
126 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
127 |
+
__pypackages__/
|
128 |
+
|
129 |
+
# Celery stuff
|
130 |
+
celerybeat-schedule
|
131 |
+
celerybeat.pid
|
132 |
+
|
133 |
+
# SageMath parsed files
|
134 |
+
*.sage.py
|
135 |
+
|
136 |
+
# Environments
|
137 |
+
.env
|
138 |
+
.venv
|
139 |
+
env/
|
140 |
+
venv/
|
141 |
+
ENV/
|
142 |
+
env.bak/
|
143 |
+
venv.bak/
|
144 |
+
|
145 |
+
# Spyder project settings
|
146 |
+
.spyderproject
|
147 |
+
.spyproject
|
148 |
+
|
149 |
+
# Rope project settings
|
150 |
+
.ropeproject
|
151 |
+
|
152 |
+
# mkdocs documentation
|
153 |
+
/site
|
154 |
+
|
155 |
+
# mypy
|
156 |
+
.mypy_cache/
|
157 |
+
.dmypy.json
|
158 |
+
dmypy.json
|
159 |
+
|
160 |
+
# Pyre type checker
|
161 |
+
.pyre/
|
162 |
+
|
163 |
+
# pytype static type analyzer
|
164 |
+
.pytype/
|
165 |
+
|
166 |
+
# Cython debug symbols
|
167 |
+
cython_debug/
|
168 |
+
|
169 |
+
# PyCharm
|
170 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
171 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
172 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
173 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
174 |
+
.idea/
|
175 |
+
|
176 |
+
# Ruff stuff:
|
177 |
+
.ruff_cache/
|
178 |
+
|
179 |
+
# PyPI configuration file
|
180 |
+
.pypirc
|
181 |
+
|
182 |
+
temp/
|
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FramePack Studio
|
2 |
+
|
3 |
+
FramePack Studio is an enhanced version of the FramePack demo script, designed to create intricate video scenes with improved prompt adherence. This is very much a work in progress, expect some bugs and broken features.
|
4 |
+

|
5 |
+
|
6 |
+
|
7 |
+
## Current Features
|
8 |
+
|
9 |
+
- **F1 and Original FramePack Models**: Run both in a single queue
|
10 |
+
- **Timestamped Prompts**: Define different prompts for specific time segments in your video
|
11 |
+
- **Prompt Blending**: Define the blending time between timestamped prompts
|
12 |
+
- **Basic LoRA Support**: Works with most (all?) hunyuan LoRAs
|
13 |
+
- **Queue System**: Process multiple generation jobs without blocking the interface
|
14 |
+
- **Metadata Saving/Import**: Prompt and seed are encoded into the output PNG, all other generation metadata is saved in a JSON file
|
15 |
+
- **I2V and T2V**: Works with or without an input image to allow for more flexibility when working with standard LoRAs
|
16 |
+
- **Latent Image Options**: When using T2V you can generate based on a black, white, green screen or pure noise image
|
17 |
+
|
18 |
+
|
19 |
+
## Fresh Installation
|
20 |
+
|
21 |
+
### Prerequisites
|
22 |
+
|
23 |
+
- Python 3.10+
|
24 |
+
- CUDA-compatible GPU with at least 8GB VRAM (16GB+ recommended)
|
25 |
+
|
26 |
+
### Setup
|
27 |
+
|
28 |
+
Install via the Pinokio community script "FP-Studio" or:
|
29 |
+
|
30 |
+
1. Clone the repository:
|
31 |
+
```bash
|
32 |
+
git clone https://github.com/colinurbs/FramePack-Studio.git
|
33 |
+
cd FramePack-Studio
|
34 |
+
```
|
35 |
+
|
36 |
+
2. Install dependencies:
|
37 |
+
```bash
|
38 |
+
pip install -r requirements.txt
|
39 |
+
```
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
Run the studio interface:
|
44 |
+
|
45 |
+
```bash
|
46 |
+
python studio.py
|
47 |
+
```
|
48 |
+
|
49 |
+
Additional command line options:
|
50 |
+
- `--share`: Create a public Gradio link to share your interface
|
51 |
+
- `--server`: Specify the server address (default: 0.0.0.0)
|
52 |
+
- `--port`: Specify a custom port
|
53 |
+
- `--inbrowser`: Automatically open the interface in your browser
|
54 |
+
|
55 |
+
## LoRAs
|
56 |
+
|
57 |
+
Add LoRAs to the /loras/ folder at the root of the installation. Select the LoRAs you wish to load and set the weights for each generation.
|
58 |
+
|
59 |
+
NOTE: slow lora loading is a known issue
|
60 |
+
|
61 |
+
## Working with Timestamped Prompts
|
62 |
+
|
63 |
+
You can create videos with changing prompts over time using the following syntax:
|
64 |
+
|
65 |
+
```
|
66 |
+
[0s: A serene forest with sunlight filtering through the trees ]
|
67 |
+
[5s: A deer appears in the clearing ]
|
68 |
+
[10s: The deer drinks from a small stream ]
|
69 |
+
```
|
70 |
+
|
71 |
+
Each timestamp defines when that prompt should start influencing the generation. The system will (hopefully) smoothly transition between prompts for a cohesive video.
|
72 |
+
|
73 |
+
## Credits
|
74 |
+
Many thanks to [Lvmin Zhang](https://github.com/lllyasviel) for the absolutely amazing work on the original [FramePack](https://github.com/lllyasviel/FramePack) code!
|
75 |
+
|
76 |
+
Thanks to [Rickard Edén](https://github.com/neph1) for the LoRA code and their general contributions to this growing FramePack scene!
|
77 |
+
|
78 |
+
Thanks to everyone who has joined the Discord, reported a bug, sumbitted a PR or helped with testing!
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
@article{zhang2025framepack,
|
83 |
+
title={Packing Input Frame Contexts in Next-Frame Prediction Models for Video Generation},
|
84 |
+
author={Lvmin Zhang and Maneesh Agrawala},
|
85 |
+
journal={Arxiv},
|
86 |
+
year={2025}
|
87 |
+
}
|
diffusers_helper/bucket_tools.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bucket_options = {
|
2 |
+
128: [
|
3 |
+
(96, 160),
|
4 |
+
(112, 144),
|
5 |
+
(128, 128),
|
6 |
+
(144, 112),
|
7 |
+
(160, 96),
|
8 |
+
],
|
9 |
+
256: [
|
10 |
+
(192, 320),
|
11 |
+
(224, 288),
|
12 |
+
(256, 256),
|
13 |
+
(288, 224),
|
14 |
+
(320, 192),
|
15 |
+
],
|
16 |
+
384: [
|
17 |
+
(256, 512),
|
18 |
+
(320, 448),
|
19 |
+
(384, 384),
|
20 |
+
(448, 320),
|
21 |
+
(512, 256),
|
22 |
+
],
|
23 |
+
512: [
|
24 |
+
(352, 704),
|
25 |
+
(384, 640),
|
26 |
+
(448, 576),
|
27 |
+
(512, 512),
|
28 |
+
(576, 448),
|
29 |
+
(640, 384),
|
30 |
+
(704, 352),
|
31 |
+
],
|
32 |
+
640: [
|
33 |
+
(416, 960),
|
34 |
+
(448, 864),
|
35 |
+
(480, 832),
|
36 |
+
(512, 768),
|
37 |
+
(544, 704),
|
38 |
+
(576, 672),
|
39 |
+
(608, 640),
|
40 |
+
(640, 640),
|
41 |
+
(640, 608),
|
42 |
+
(672, 576),
|
43 |
+
(704, 544),
|
44 |
+
(768, 512),
|
45 |
+
(832, 480),
|
46 |
+
(864, 448),
|
47 |
+
(960, 416),
|
48 |
+
],
|
49 |
+
768: [
|
50 |
+
(512, 1024),
|
51 |
+
(576, 896),
|
52 |
+
(640, 832),
|
53 |
+
(704, 768),
|
54 |
+
(768, 768),
|
55 |
+
(768, 704),
|
56 |
+
(832, 640),
|
57 |
+
(896, 576),
|
58 |
+
(1024, 512),
|
59 |
+
],
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
def find_nearest_bucket(h, w, resolution=640):
|
64 |
+
# Use the provided resolution or find the closest available bucket size
|
65 |
+
# print(f"find_nearest_bucket called with h={h}, w={w}, resolution={resolution}")
|
66 |
+
|
67 |
+
if resolution not in bucket_options:
|
68 |
+
# Find the closest available resolution
|
69 |
+
available_resolutions = list(bucket_options.keys())
|
70 |
+
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
|
71 |
+
# print(f"Resolution {resolution} not found in bucket options, using closest available: {closest_resolution}")
|
72 |
+
resolution = closest_resolution
|
73 |
+
# else:
|
74 |
+
# print(f"Resolution {resolution} found in bucket options")
|
75 |
+
|
76 |
+
# Calculate the aspect ratio of the input image
|
77 |
+
input_aspect_ratio = w / h if h > 0 else 1.0
|
78 |
+
# print(f"Input aspect ratio: {input_aspect_ratio:.4f}")
|
79 |
+
|
80 |
+
min_diff = float('inf')
|
81 |
+
best_bucket = None
|
82 |
+
|
83 |
+
# Find the bucket size with the closest aspect ratio to the input image
|
84 |
+
for (bucket_h, bucket_w) in bucket_options[resolution]:
|
85 |
+
bucket_aspect_ratio = bucket_w / bucket_h if bucket_h > 0 else 1.0
|
86 |
+
# Calculate the difference in aspect ratios
|
87 |
+
diff = abs(bucket_aspect_ratio - input_aspect_ratio)
|
88 |
+
if diff < min_diff:
|
89 |
+
min_diff = diff
|
90 |
+
best_bucket = (bucket_h, bucket_w)
|
91 |
+
# print(f" Checking bucket ({bucket_h}, {bucket_w}), aspect ratio={bucket_aspect_ratio:.4f}, diff={diff:.4f}, current best={best_bucket}")
|
92 |
+
|
93 |
+
# print(f"Using resolution {resolution}, selected bucket: {best_bucket}")
|
94 |
+
return best_bucket
|
diffusers_helper/clip_vision.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def hf_clip_vision_encode(image, feature_extractor, image_encoder):
|
5 |
+
assert isinstance(image, np.ndarray)
|
6 |
+
assert image.ndim == 3 and image.shape[2] == 3
|
7 |
+
assert image.dtype == np.uint8
|
8 |
+
|
9 |
+
preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
|
10 |
+
image_encoder_output = image_encoder(**preprocessed)
|
11 |
+
|
12 |
+
return image_encoder_output
|
diffusers_helper/dit_common.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import accelerate.accelerator
|
3 |
+
|
4 |
+
from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
|
5 |
+
|
6 |
+
|
7 |
+
accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
|
8 |
+
|
9 |
+
|
10 |
+
def LayerNorm_forward(self, x):
|
11 |
+
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
|
12 |
+
|
13 |
+
|
14 |
+
LayerNorm.forward = LayerNorm_forward
|
15 |
+
torch.nn.LayerNorm.forward = LayerNorm_forward
|
16 |
+
|
17 |
+
|
18 |
+
def FP32LayerNorm_forward(self, x):
|
19 |
+
origin_dtype = x.dtype
|
20 |
+
return torch.nn.functional.layer_norm(
|
21 |
+
x.float(),
|
22 |
+
self.normalized_shape,
|
23 |
+
self.weight.float() if self.weight is not None else None,
|
24 |
+
self.bias.float() if self.bias is not None else None,
|
25 |
+
self.eps,
|
26 |
+
).to(origin_dtype)
|
27 |
+
|
28 |
+
|
29 |
+
FP32LayerNorm.forward = FP32LayerNorm_forward
|
30 |
+
|
31 |
+
|
32 |
+
def RMSNorm_forward(self, hidden_states):
|
33 |
+
input_dtype = hidden_states.dtype
|
34 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
35 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
36 |
+
|
37 |
+
if self.weight is None:
|
38 |
+
return hidden_states.to(input_dtype)
|
39 |
+
|
40 |
+
return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
|
41 |
+
|
42 |
+
|
43 |
+
RMSNorm.forward = RMSNorm_forward
|
44 |
+
|
45 |
+
|
46 |
+
def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
|
47 |
+
emb = self.linear(self.silu(conditioning_embedding))
|
48 |
+
scale, shift = emb.chunk(2, dim=1)
|
49 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
|
diffusers_helper/gradio/progress_bar.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
progress_html = '''
|
2 |
+
<div class="loader-container">
|
3 |
+
<div class="loader"></div>
|
4 |
+
<div class="progress-container">
|
5 |
+
<progress value="*number*" max="100"></progress>
|
6 |
+
</div>
|
7 |
+
<span>*text*</span>
|
8 |
+
</div>
|
9 |
+
'''
|
10 |
+
|
11 |
+
css = '''
|
12 |
+
.loader-container {
|
13 |
+
display: flex; /* Use flex to align items horizontally */
|
14 |
+
align-items: center; /* Center items vertically within the container */
|
15 |
+
white-space: nowrap; /* Prevent line breaks within the container */
|
16 |
+
}
|
17 |
+
|
18 |
+
.loader {
|
19 |
+
border: 8px solid #f3f3f3; /* Light grey */
|
20 |
+
border-top: 8px solid #3498db; /* Blue */
|
21 |
+
border-radius: 50%;
|
22 |
+
width: 30px;
|
23 |
+
height: 30px;
|
24 |
+
animation: spin 2s linear infinite;
|
25 |
+
}
|
26 |
+
|
27 |
+
@keyframes spin {
|
28 |
+
0% { transform: rotate(0deg); }
|
29 |
+
100% { transform: rotate(360deg); }
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Style the progress bar */
|
33 |
+
progress {
|
34 |
+
appearance: none; /* Remove default styling */
|
35 |
+
height: 20px; /* Set the height of the progress bar */
|
36 |
+
border-radius: 5px; /* Round the corners of the progress bar */
|
37 |
+
background-color: #f3f3f3; /* Light grey background */
|
38 |
+
width: 100%;
|
39 |
+
vertical-align: middle !important;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Style the progress bar container */
|
43 |
+
.progress-container {
|
44 |
+
margin-left: 20px;
|
45 |
+
margin-right: 20px;
|
46 |
+
flex-grow: 1; /* Allow the progress container to take up remaining space */
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Set the color of the progress bar fill */
|
50 |
+
progress::-webkit-progress-value {
|
51 |
+
background-color: #3498db; /* Blue color for the fill */
|
52 |
+
}
|
53 |
+
|
54 |
+
progress::-moz-progress-bar {
|
55 |
+
background-color: #3498db; /* Blue color for the fill in Firefox */
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Style the text on the progress bar */
|
59 |
+
progress::after {
|
60 |
+
content: attr(value '%'); /* Display the progress value followed by '%' */
|
61 |
+
position: absolute;
|
62 |
+
top: 50%;
|
63 |
+
left: 50%;
|
64 |
+
transform: translate(-50%, -50%);
|
65 |
+
color: white; /* Set text color */
|
66 |
+
font-size: 14px; /* Set font size */
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Style other texts */
|
70 |
+
.loader-container > span {
|
71 |
+
margin-left: 5px; /* Add spacing between the progress bar and the text */
|
72 |
+
}
|
73 |
+
|
74 |
+
.no-generating-animation > .generating {
|
75 |
+
display: none !important;
|
76 |
+
}
|
77 |
+
|
78 |
+
'''
|
79 |
+
|
80 |
+
|
81 |
+
def make_progress_bar_html(number, text):
|
82 |
+
return progress_html.replace('*number*', str(number)).replace('*text*', text)
|
83 |
+
|
84 |
+
|
85 |
+
def make_progress_bar_css():
|
86 |
+
return css
|
diffusers_helper/hf_login.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
def login(token):
|
5 |
+
from huggingface_hub import login
|
6 |
+
import time
|
7 |
+
|
8 |
+
while True:
|
9 |
+
try:
|
10 |
+
login(token)
|
11 |
+
print('HF login ok.')
|
12 |
+
break
|
13 |
+
except Exception as e:
|
14 |
+
print(f'HF login failed: {e}. Retrying')
|
15 |
+
time.sleep(0.5)
|
16 |
+
|
17 |
+
|
18 |
+
hf_token = os.environ.get('HF_TOKEN', None)
|
19 |
+
|
20 |
+
if hf_token is not None:
|
21 |
+
login(hf_token)
|
diffusers_helper/hunyuan.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
4 |
+
from diffusers_helper.utils import crop_or_pad_yield_mask
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
|
9 |
+
assert isinstance(prompt, str)
|
10 |
+
|
11 |
+
prompt = [prompt]
|
12 |
+
|
13 |
+
# LLAMA
|
14 |
+
|
15 |
+
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
|
16 |
+
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
|
17 |
+
|
18 |
+
llama_inputs = tokenizer(
|
19 |
+
prompt_llama,
|
20 |
+
padding="max_length",
|
21 |
+
max_length=max_length + crop_start,
|
22 |
+
truncation=True,
|
23 |
+
return_tensors="pt",
|
24 |
+
return_length=False,
|
25 |
+
return_overflowing_tokens=False,
|
26 |
+
return_attention_mask=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
|
30 |
+
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
|
31 |
+
llama_attention_length = int(llama_attention_mask.sum())
|
32 |
+
|
33 |
+
llama_outputs = text_encoder(
|
34 |
+
input_ids=llama_input_ids,
|
35 |
+
attention_mask=llama_attention_mask,
|
36 |
+
output_hidden_states=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
|
40 |
+
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
|
41 |
+
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
|
42 |
+
|
43 |
+
assert torch.all(llama_attention_mask.bool())
|
44 |
+
|
45 |
+
# CLIP
|
46 |
+
|
47 |
+
clip_l_input_ids = tokenizer_2(
|
48 |
+
prompt,
|
49 |
+
padding="max_length",
|
50 |
+
max_length=77,
|
51 |
+
truncation=True,
|
52 |
+
return_overflowing_tokens=False,
|
53 |
+
return_length=False,
|
54 |
+
return_tensors="pt",
|
55 |
+
).input_ids
|
56 |
+
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
|
57 |
+
|
58 |
+
return llama_vec, clip_l_pooler
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def vae_decode_fake(latents):
|
63 |
+
latent_rgb_factors = [
|
64 |
+
[-0.0395, -0.0331, 0.0445],
|
65 |
+
[0.0696, 0.0795, 0.0518],
|
66 |
+
[0.0135, -0.0945, -0.0282],
|
67 |
+
[0.0108, -0.0250, -0.0765],
|
68 |
+
[-0.0209, 0.0032, 0.0224],
|
69 |
+
[-0.0804, -0.0254, -0.0639],
|
70 |
+
[-0.0991, 0.0271, -0.0669],
|
71 |
+
[-0.0646, -0.0422, -0.0400],
|
72 |
+
[-0.0696, -0.0595, -0.0894],
|
73 |
+
[-0.0799, -0.0208, -0.0375],
|
74 |
+
[0.1166, 0.1627, 0.0962],
|
75 |
+
[0.1165, 0.0432, 0.0407],
|
76 |
+
[-0.2315, -0.1920, -0.1355],
|
77 |
+
[-0.0270, 0.0401, -0.0821],
|
78 |
+
[-0.0616, -0.0997, -0.0727],
|
79 |
+
[0.0249, -0.0469, -0.1703]
|
80 |
+
] # From comfyui
|
81 |
+
|
82 |
+
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
|
83 |
+
|
84 |
+
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
|
85 |
+
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
|
86 |
+
|
87 |
+
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
|
88 |
+
images = images.clamp(0.0, 1.0)
|
89 |
+
|
90 |
+
return images
|
91 |
+
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
def vae_decode(latents, vae, image_mode=False):
|
95 |
+
latents = latents / vae.config.scaling_factor
|
96 |
+
|
97 |
+
if not image_mode:
|
98 |
+
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
|
99 |
+
else:
|
100 |
+
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
|
101 |
+
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
|
102 |
+
image = torch.cat(image, dim=2)
|
103 |
+
|
104 |
+
return image
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def vae_encode(image, vae):
|
109 |
+
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
|
110 |
+
latents = latents * vae.config.scaling_factor
|
111 |
+
return latents
|
diffusers_helper/k_diffusion/uni_pc_fm.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Better Flow Matching UniPC by Lvmin Zhang
|
2 |
+
# (c) 2025
|
3 |
+
# CC BY-SA 4.0
|
4 |
+
# Attribution-ShareAlike 4.0 International Licence
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from tqdm.auto import trange
|
10 |
+
|
11 |
+
|
12 |
+
def expand_dims(v, dims):
|
13 |
+
return v[(...,) + (None,) * (dims - 1)]
|
14 |
+
|
15 |
+
|
16 |
+
class FlowMatchUniPC:
|
17 |
+
def __init__(self, model, extra_args, variant='bh1'):
|
18 |
+
self.model = model
|
19 |
+
self.variant = variant
|
20 |
+
self.extra_args = extra_args
|
21 |
+
|
22 |
+
def model_fn(self, x, t):
|
23 |
+
return self.model(x, t, **self.extra_args)
|
24 |
+
|
25 |
+
def update_fn(self, x, model_prev_list, t_prev_list, t, order):
|
26 |
+
assert order <= len(model_prev_list)
|
27 |
+
dims = x.dim()
|
28 |
+
|
29 |
+
t_prev_0 = t_prev_list[-1]
|
30 |
+
lambda_prev_0 = - torch.log(t_prev_0)
|
31 |
+
lambda_t = - torch.log(t)
|
32 |
+
model_prev_0 = model_prev_list[-1]
|
33 |
+
|
34 |
+
h = lambda_t - lambda_prev_0
|
35 |
+
|
36 |
+
rks = []
|
37 |
+
D1s = []
|
38 |
+
for i in range(1, order):
|
39 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
40 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
41 |
+
lambda_prev_i = - torch.log(t_prev_i)
|
42 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
43 |
+
rks.append(rk)
|
44 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
45 |
+
|
46 |
+
rks.append(1.)
|
47 |
+
rks = torch.tensor(rks, device=x.device)
|
48 |
+
|
49 |
+
R = []
|
50 |
+
b = []
|
51 |
+
|
52 |
+
hh = -h[0]
|
53 |
+
h_phi_1 = torch.expm1(hh)
|
54 |
+
h_phi_k = h_phi_1 / hh - 1
|
55 |
+
|
56 |
+
factorial_i = 1
|
57 |
+
|
58 |
+
if self.variant == 'bh1':
|
59 |
+
B_h = hh
|
60 |
+
elif self.variant == 'bh2':
|
61 |
+
B_h = torch.expm1(hh)
|
62 |
+
else:
|
63 |
+
raise NotImplementedError('Bad variant!')
|
64 |
+
|
65 |
+
for i in range(1, order + 1):
|
66 |
+
R.append(torch.pow(rks, i - 1))
|
67 |
+
b.append(h_phi_k * factorial_i / B_h)
|
68 |
+
factorial_i *= (i + 1)
|
69 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
70 |
+
|
71 |
+
R = torch.stack(R)
|
72 |
+
b = torch.tensor(b, device=x.device)
|
73 |
+
|
74 |
+
use_predictor = len(D1s) > 0
|
75 |
+
|
76 |
+
if use_predictor:
|
77 |
+
D1s = torch.stack(D1s, dim=1)
|
78 |
+
if order == 2:
|
79 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
80 |
+
else:
|
81 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
82 |
+
else:
|
83 |
+
D1s = None
|
84 |
+
rhos_p = None
|
85 |
+
|
86 |
+
if order == 1:
|
87 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
88 |
+
else:
|
89 |
+
rhos_c = torch.linalg.solve(R, b)
|
90 |
+
|
91 |
+
x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
|
92 |
+
|
93 |
+
if use_predictor:
|
94 |
+
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
|
95 |
+
else:
|
96 |
+
pred_res = 0
|
97 |
+
|
98 |
+
x_t = x_t_ - expand_dims(B_h, dims) * pred_res
|
99 |
+
model_t = self.model_fn(x_t, t)
|
100 |
+
|
101 |
+
if D1s is not None:
|
102 |
+
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
|
103 |
+
else:
|
104 |
+
corr_res = 0
|
105 |
+
|
106 |
+
D1_t = (model_t - model_prev_0)
|
107 |
+
x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
108 |
+
|
109 |
+
return x_t, model_t
|
110 |
+
|
111 |
+
def sample(self, x, sigmas, callback=None, disable_pbar=False):
|
112 |
+
order = min(3, len(sigmas) - 2)
|
113 |
+
model_prev_list, t_prev_list = [], []
|
114 |
+
for i in trange(len(sigmas) - 1, disable=disable_pbar):
|
115 |
+
vec_t = sigmas[i].expand(x.shape[0])
|
116 |
+
|
117 |
+
if i == 0:
|
118 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
119 |
+
t_prev_list = [vec_t]
|
120 |
+
elif i < order:
|
121 |
+
init_order = i
|
122 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
|
123 |
+
model_prev_list.append(model_x)
|
124 |
+
t_prev_list.append(vec_t)
|
125 |
+
else:
|
126 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
|
127 |
+
model_prev_list.append(model_x)
|
128 |
+
t_prev_list.append(vec_t)
|
129 |
+
|
130 |
+
model_prev_list = model_prev_list[-order:]
|
131 |
+
t_prev_list = t_prev_list[-order:]
|
132 |
+
|
133 |
+
if callback is not None:
|
134 |
+
callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
|
135 |
+
|
136 |
+
return model_prev_list[-1]
|
137 |
+
|
138 |
+
|
139 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
140 |
+
assert variant in ['bh1', 'bh2']
|
141 |
+
return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
|
diffusers_helper/k_diffusion/wrapper.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def append_dims(x, target_dims):
|
5 |
+
return x[(...,) + (None,) * (target_dims - x.ndim)]
|
6 |
+
|
7 |
+
|
8 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
|
9 |
+
if guidance_rescale == 0:
|
10 |
+
return noise_cfg
|
11 |
+
|
12 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
13 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
14 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
15 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
|
16 |
+
return noise_cfg
|
17 |
+
|
18 |
+
|
19 |
+
def fm_wrapper(transformer, t_scale=1000.0):
|
20 |
+
def k_model(x, sigma, **extra_args):
|
21 |
+
dtype = extra_args['dtype']
|
22 |
+
cfg_scale = extra_args['cfg_scale']
|
23 |
+
cfg_rescale = extra_args['cfg_rescale']
|
24 |
+
concat_latent = extra_args['concat_latent']
|
25 |
+
|
26 |
+
original_dtype = x.dtype
|
27 |
+
sigma = sigma.float()
|
28 |
+
|
29 |
+
x = x.to(dtype)
|
30 |
+
timestep = (sigma * t_scale).to(dtype)
|
31 |
+
|
32 |
+
if concat_latent is None:
|
33 |
+
hidden_states = x
|
34 |
+
else:
|
35 |
+
hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
|
36 |
+
|
37 |
+
pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
|
38 |
+
|
39 |
+
if cfg_scale == 1.0:
|
40 |
+
pred_negative = torch.zeros_like(pred_positive)
|
41 |
+
else:
|
42 |
+
pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
|
43 |
+
|
44 |
+
pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
|
45 |
+
pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
|
46 |
+
|
47 |
+
x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
|
48 |
+
|
49 |
+
return x0.to(dtype=original_dtype)
|
50 |
+
|
51 |
+
return k_model
|
diffusers_helper/lora_utils.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path, PurePath
|
2 |
+
from typing import Dict, List, Optional, Union
|
3 |
+
from diffusers.loaders.lora_pipeline import _fetch_state_dict
|
4 |
+
from diffusers.loaders.lora_conversion_utils import _convert_hunyuan_video_lora_to_diffusers
|
5 |
+
from diffusers.utils.peft_utils import set_weights_and_activate_adapters
|
6 |
+
from diffusers.loaders.peft import _SET_ADAPTER_SCALE_FN_MAPPING
|
7 |
+
import torch
|
8 |
+
|
9 |
+
def load_lora(transformer, lora_path: Path, weight_name: Optional[str] = "pytorch_lora_weights.safetensors"):
|
10 |
+
"""
|
11 |
+
Load LoRA weights into the transformer model.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
transformer: The transformer model to which LoRA weights will be applied.
|
15 |
+
lora_path (Path): Path to the LoRA weights file.
|
16 |
+
weight_name (Optional[str]): Name of the weight to load.
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
state_dict = _fetch_state_dict(
|
21 |
+
lora_path,
|
22 |
+
weight_name,
|
23 |
+
True,
|
24 |
+
True,
|
25 |
+
None,
|
26 |
+
None,
|
27 |
+
None,
|
28 |
+
None,
|
29 |
+
None,
|
30 |
+
None,
|
31 |
+
None,
|
32 |
+
None)
|
33 |
+
|
34 |
+
state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)
|
35 |
+
|
36 |
+
# should weight_name even be Optional[str] or just str?
|
37 |
+
# For now, we assume it is never None
|
38 |
+
# The module name in the state_dict must not include a . in the name
|
39 |
+
# See https://github.com/pytorch/pytorch/pull/6639/files#diff-4be56271f7bfe650e3521c81fd363da58f109cd23ee80d243156d2d6ccda6263R133-R134
|
40 |
+
adapter_name = PurePath(str(weight_name).replace('_DOT_', '.')).stem.replace('.', '_DOT_')
|
41 |
+
if '_DOT_' in adapter_name:
|
42 |
+
print(
|
43 |
+
f"LoRA file '{weight_name}' contains a '.' in the name. " +
|
44 |
+
'This may cause issues. Consider renaming the file.' +
|
45 |
+
f" Using '{adapter_name}' as the adapter name to be safe."
|
46 |
+
)
|
47 |
+
|
48 |
+
# Check if adapter already exists and delete it if it does
|
49 |
+
if hasattr(transformer, 'peft_config') and adapter_name in transformer.peft_config:
|
50 |
+
print(f"Adapter '{adapter_name}' already exists. Removing it before loading again.")
|
51 |
+
# Use delete_adapters (plural) instead of delete_adapter
|
52 |
+
transformer.delete_adapters([adapter_name])
|
53 |
+
|
54 |
+
# Load the adapter with the original name
|
55 |
+
transformer.load_lora_adapter(state_dict, network_alphas=None, adapter_name=adapter_name)
|
56 |
+
print(f"LoRA weights '{adapter_name}' loaded successfully.")
|
57 |
+
|
58 |
+
return transformer
|
59 |
+
|
60 |
+
def unload_all_loras(transformer):
|
61 |
+
"""
|
62 |
+
Completely unload all LoRA adapters from the transformer model.
|
63 |
+
"""
|
64 |
+
if hasattr(transformer, 'peft_config') and transformer.peft_config:
|
65 |
+
# Get all adapter names
|
66 |
+
adapter_names = list(transformer.peft_config.keys())
|
67 |
+
|
68 |
+
if adapter_names:
|
69 |
+
print(f"Removing all LoRA adapters: {', '.join(adapter_names)}")
|
70 |
+
# Delete all adapters
|
71 |
+
transformer.delete_adapters(adapter_names)
|
72 |
+
|
73 |
+
# Force cleanup of any remaining adapter references
|
74 |
+
if hasattr(transformer, 'active_adapter'):
|
75 |
+
transformer.active_adapter = None
|
76 |
+
|
77 |
+
# Clear any cached states
|
78 |
+
for module in transformer.modules():
|
79 |
+
if hasattr(module, 'lora_A'):
|
80 |
+
if isinstance(module.lora_A, dict):
|
81 |
+
module.lora_A.clear()
|
82 |
+
if hasattr(module, 'lora_B'):
|
83 |
+
if isinstance(module.lora_B, dict):
|
84 |
+
module.lora_B.clear()
|
85 |
+
if hasattr(module, 'scaling'):
|
86 |
+
if isinstance(module.scaling, dict):
|
87 |
+
module.scaling.clear()
|
88 |
+
|
89 |
+
print("All LoRA adapters have been completely removed.")
|
90 |
+
else:
|
91 |
+
print("No LoRA adapters found to remove.")
|
92 |
+
else:
|
93 |
+
print("Model doesn't have any LoRA adapters or peft_config.")
|
94 |
+
|
95 |
+
# Force garbage collection
|
96 |
+
import gc
|
97 |
+
gc.collect()
|
98 |
+
if torch.cuda.is_available():
|
99 |
+
torch.cuda.empty_cache()
|
100 |
+
|
101 |
+
return transformer
|
102 |
+
|
103 |
+
|
104 |
+
# TODO(neph1): remove when HunyuanVideoTransformer3DModelPacked is in _SET_ADAPTER_SCALE_FN_MAPPING
|
105 |
+
def set_adapters(
|
106 |
+
transformer,
|
107 |
+
adapter_names: Union[List[str], str],
|
108 |
+
weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None,
|
109 |
+
):
|
110 |
+
|
111 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
112 |
+
|
113 |
+
# Expand weights into a list, one entry per adapter
|
114 |
+
# examples for e.g. 2 adapters: [{...}, 7] -> [7,7] ; None -> [None, None]
|
115 |
+
if not isinstance(weights, list):
|
116 |
+
weights = [weights] * len(adapter_names)
|
117 |
+
|
118 |
+
if len(adapter_names) != len(weights):
|
119 |
+
raise ValueError(
|
120 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
|
121 |
+
)
|
122 |
+
|
123 |
+
# Set None values to default of 1.0
|
124 |
+
# e.g. [{...}, 7] -> [{...}, 7] ; [None, None] -> [1.0, 1.0]
|
125 |
+
weights = [w if w is not None else 1.0 for w in weights]
|
126 |
+
|
127 |
+
# e.g. [{...}, 7] -> [{expanded dict...}, 7]
|
128 |
+
scale_expansion_fn = _SET_ADAPTER_SCALE_FN_MAPPING["HunyuanVideoTransformer3DModel"]
|
129 |
+
weights = scale_expansion_fn(transformer, weights)
|
130 |
+
|
131 |
+
set_weights_and_activate_adapters(transformer, adapter_names, weights)
|
diffusers_helper/memory.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# By lllyasviel
|
2 |
+
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
cpu = torch.device('cpu')
|
8 |
+
gpu = torch.device(f'cuda:{torch.cuda.current_device()}')
|
9 |
+
gpu_complete_modules = []
|
10 |
+
|
11 |
+
|
12 |
+
class DynamicSwapInstaller:
|
13 |
+
@staticmethod
|
14 |
+
def _install_module(module: torch.nn.Module, **kwargs):
|
15 |
+
original_class = module.__class__
|
16 |
+
module.__dict__['forge_backup_original_class'] = original_class
|
17 |
+
|
18 |
+
def hacked_get_attr(self, name: str):
|
19 |
+
if '_parameters' in self.__dict__:
|
20 |
+
_parameters = self.__dict__['_parameters']
|
21 |
+
if name in _parameters:
|
22 |
+
p = _parameters[name]
|
23 |
+
if p is None:
|
24 |
+
return None
|
25 |
+
if p.__class__ == torch.nn.Parameter:
|
26 |
+
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
|
27 |
+
else:
|
28 |
+
return p.to(**kwargs)
|
29 |
+
if '_buffers' in self.__dict__:
|
30 |
+
_buffers = self.__dict__['_buffers']
|
31 |
+
if name in _buffers:
|
32 |
+
return _buffers[name].to(**kwargs)
|
33 |
+
return super(original_class, self).__getattr__(name)
|
34 |
+
|
35 |
+
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
|
36 |
+
'__getattr__': hacked_get_attr,
|
37 |
+
})
|
38 |
+
|
39 |
+
return
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def _uninstall_module(module: torch.nn.Module):
|
43 |
+
if 'forge_backup_original_class' in module.__dict__:
|
44 |
+
module.__class__ = module.__dict__.pop('forge_backup_original_class')
|
45 |
+
return
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def install_model(model: torch.nn.Module, **kwargs):
|
49 |
+
for m in model.modules():
|
50 |
+
DynamicSwapInstaller._install_module(m, **kwargs)
|
51 |
+
return
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def uninstall_model(model: torch.nn.Module):
|
55 |
+
for m in model.modules():
|
56 |
+
DynamicSwapInstaller._uninstall_module(m)
|
57 |
+
return
|
58 |
+
|
59 |
+
|
60 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device):
|
61 |
+
if hasattr(model, 'scale_shift_table'):
|
62 |
+
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
63 |
+
return
|
64 |
+
|
65 |
+
for k, p in model.named_modules():
|
66 |
+
if hasattr(p, 'weight'):
|
67 |
+
p.to(target_device)
|
68 |
+
return
|
69 |
+
|
70 |
+
|
71 |
+
def get_cuda_free_memory_gb(device=None):
|
72 |
+
if device is None:
|
73 |
+
device = gpu
|
74 |
+
|
75 |
+
memory_stats = torch.cuda.memory_stats(device)
|
76 |
+
bytes_active = memory_stats['active_bytes.all.current']
|
77 |
+
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
78 |
+
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
79 |
+
bytes_inactive_reserved = bytes_reserved - bytes_active
|
80 |
+
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
81 |
+
return bytes_total_available / (1024 ** 3)
|
82 |
+
|
83 |
+
|
84 |
+
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
85 |
+
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
86 |
+
|
87 |
+
for m in model.modules():
|
88 |
+
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
return
|
91 |
+
|
92 |
+
if hasattr(m, 'weight'):
|
93 |
+
m.to(device=target_device)
|
94 |
+
|
95 |
+
model.to(device=target_device)
|
96 |
+
torch.cuda.empty_cache()
|
97 |
+
return
|
98 |
+
|
99 |
+
|
100 |
+
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
101 |
+
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
102 |
+
|
103 |
+
for m in model.modules():
|
104 |
+
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
105 |
+
torch.cuda.empty_cache()
|
106 |
+
return
|
107 |
+
|
108 |
+
if hasattr(m, 'weight'):
|
109 |
+
m.to(device=cpu)
|
110 |
+
|
111 |
+
model.to(device=cpu)
|
112 |
+
torch.cuda.empty_cache()
|
113 |
+
return
|
114 |
+
|
115 |
+
|
116 |
+
def unload_complete_models(*args):
|
117 |
+
for m in gpu_complete_modules + list(args):
|
118 |
+
m.to(device=cpu)
|
119 |
+
print(f'Unloaded {m.__class__.__name__} as complete.')
|
120 |
+
|
121 |
+
gpu_complete_modules.clear()
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
return
|
124 |
+
|
125 |
+
|
126 |
+
def load_model_as_complete(model, target_device, unload=True):
|
127 |
+
if unload:
|
128 |
+
unload_complete_models()
|
129 |
+
|
130 |
+
model.to(device=target_device)
|
131 |
+
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
132 |
+
|
133 |
+
gpu_complete_modules.append(model)
|
134 |
+
return
|
diffusers_helper/models/hunyuan_video_packed.py
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import einops
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from diffusers.loaders import FromOriginalModelMixin
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.loaders import PeftAdapterMixin
|
11 |
+
from diffusers.utils import logging
|
12 |
+
from diffusers.models.attention import FeedForward
|
13 |
+
from diffusers.models.attention_processor import Attention
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
15 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from diffusers_helper.dit_common import LayerNorm
|
18 |
+
from diffusers_helper.utils import zero_module
|
19 |
+
|
20 |
+
|
21 |
+
enabled_backends = []
|
22 |
+
|
23 |
+
if torch.backends.cuda.flash_sdp_enabled():
|
24 |
+
enabled_backends.append("flash")
|
25 |
+
if torch.backends.cuda.math_sdp_enabled():
|
26 |
+
enabled_backends.append("math")
|
27 |
+
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
28 |
+
enabled_backends.append("mem_efficient")
|
29 |
+
if torch.backends.cuda.cudnn_sdp_enabled():
|
30 |
+
enabled_backends.append("cudnn")
|
31 |
+
|
32 |
+
print("Currently enabled native sdp backends:", enabled_backends)
|
33 |
+
|
34 |
+
try:
|
35 |
+
# raise NotImplementedError
|
36 |
+
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
37 |
+
print('Xformers is installed!')
|
38 |
+
except:
|
39 |
+
print('Xformers is not installed!')
|
40 |
+
xformers_attn_func = None
|
41 |
+
|
42 |
+
try:
|
43 |
+
# raise NotImplementedError
|
44 |
+
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
45 |
+
print('Flash Attn is installed!')
|
46 |
+
except:
|
47 |
+
print('Flash Attn is not installed!')
|
48 |
+
flash_attn_varlen_func = None
|
49 |
+
flash_attn_func = None
|
50 |
+
|
51 |
+
try:
|
52 |
+
# raise NotImplementedError
|
53 |
+
from sageattention import sageattn_varlen, sageattn
|
54 |
+
print('Sage Attn is installed!')
|
55 |
+
except:
|
56 |
+
print('Sage Attn is not installed!')
|
57 |
+
sageattn_varlen = None
|
58 |
+
sageattn = None
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
+
|
63 |
+
|
64 |
+
def pad_for_3d_conv(x, kernel_size):
|
65 |
+
b, c, t, h, w = x.shape
|
66 |
+
pt, ph, pw = kernel_size
|
67 |
+
pad_t = (pt - (t % pt)) % pt
|
68 |
+
pad_h = (ph - (h % ph)) % ph
|
69 |
+
pad_w = (pw - (w % pw)) % pw
|
70 |
+
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
71 |
+
|
72 |
+
|
73 |
+
def center_down_sample_3d(x, kernel_size):
|
74 |
+
# pt, ph, pw = kernel_size
|
75 |
+
# cp = (pt * ph * pw) // 2
|
76 |
+
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
77 |
+
# xc = xp[cp]
|
78 |
+
# return xc
|
79 |
+
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
80 |
+
|
81 |
+
|
82 |
+
def get_cu_seqlens(text_mask, img_len):
|
83 |
+
batch_size = text_mask.shape[0]
|
84 |
+
text_len = text_mask.sum(dim=1)
|
85 |
+
max_len = text_mask.shape[1] + img_len
|
86 |
+
|
87 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
88 |
+
|
89 |
+
for i in range(batch_size):
|
90 |
+
s = text_len[i] + img_len
|
91 |
+
s1 = i * max_len + s
|
92 |
+
s2 = (i + 1) * max_len
|
93 |
+
cu_seqlens[2 * i + 1] = s1
|
94 |
+
cu_seqlens[2 * i + 2] = s2
|
95 |
+
|
96 |
+
return cu_seqlens
|
97 |
+
|
98 |
+
|
99 |
+
def apply_rotary_emb_transposed(x, freqs_cis):
|
100 |
+
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
101 |
+
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
102 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
103 |
+
out = x.float() * cos + x_rotated.float() * sin
|
104 |
+
out = out.to(x)
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
109 |
+
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
110 |
+
if sageattn is not None:
|
111 |
+
x = sageattn(q, k, v, tensor_layout='NHD')
|
112 |
+
return x
|
113 |
+
|
114 |
+
if flash_attn_func is not None:
|
115 |
+
x = flash_attn_func(q, k, v)
|
116 |
+
return x
|
117 |
+
|
118 |
+
if xformers_attn_func is not None:
|
119 |
+
x = xformers_attn_func(q, k, v)
|
120 |
+
return x
|
121 |
+
|
122 |
+
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
123 |
+
return x
|
124 |
+
|
125 |
+
batch_size = q.shape[0]
|
126 |
+
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
127 |
+
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
128 |
+
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
129 |
+
if sageattn_varlen is not None:
|
130 |
+
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
131 |
+
elif flash_attn_varlen_func is not None:
|
132 |
+
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
133 |
+
else:
|
134 |
+
raise NotImplementedError('No Attn Installed!')
|
135 |
+
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
class HunyuanAttnProcessorFlashAttnDouble:
|
140 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
141 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
142 |
+
|
143 |
+
query = attn.to_q(hidden_states)
|
144 |
+
key = attn.to_k(hidden_states)
|
145 |
+
value = attn.to_v(hidden_states)
|
146 |
+
|
147 |
+
query = query.unflatten(2, (attn.heads, -1))
|
148 |
+
key = key.unflatten(2, (attn.heads, -1))
|
149 |
+
value = value.unflatten(2, (attn.heads, -1))
|
150 |
+
|
151 |
+
query = attn.norm_q(query)
|
152 |
+
key = attn.norm_k(key)
|
153 |
+
|
154 |
+
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
155 |
+
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
156 |
+
|
157 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
158 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
159 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
160 |
+
|
161 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
162 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
163 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
164 |
+
|
165 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
166 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
167 |
+
|
168 |
+
query = torch.cat([query, encoder_query], dim=1)
|
169 |
+
key = torch.cat([key, encoder_key], dim=1)
|
170 |
+
value = torch.cat([value, encoder_value], dim=1)
|
171 |
+
|
172 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
173 |
+
hidden_states = hidden_states.flatten(-2)
|
174 |
+
|
175 |
+
txt_length = encoder_hidden_states.shape[1]
|
176 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
177 |
+
|
178 |
+
hidden_states = attn.to_out[0](hidden_states)
|
179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
180 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
181 |
+
|
182 |
+
return hidden_states, encoder_hidden_states
|
183 |
+
|
184 |
+
|
185 |
+
class HunyuanAttnProcessorFlashAttnSingle:
|
186 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
187 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
188 |
+
|
189 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
190 |
+
|
191 |
+
query = attn.to_q(hidden_states)
|
192 |
+
key = attn.to_k(hidden_states)
|
193 |
+
value = attn.to_v(hidden_states)
|
194 |
+
|
195 |
+
query = query.unflatten(2, (attn.heads, -1))
|
196 |
+
key = key.unflatten(2, (attn.heads, -1))
|
197 |
+
value = value.unflatten(2, (attn.heads, -1))
|
198 |
+
|
199 |
+
query = attn.norm_q(query)
|
200 |
+
key = attn.norm_k(key)
|
201 |
+
|
202 |
+
txt_length = encoder_hidden_states.shape[1]
|
203 |
+
|
204 |
+
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
205 |
+
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
206 |
+
|
207 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
208 |
+
hidden_states = hidden_states.flatten(-2)
|
209 |
+
|
210 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
211 |
+
|
212 |
+
return hidden_states, encoder_hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
216 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
220 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
221 |
+
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
222 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
223 |
+
|
224 |
+
def forward(self, timestep, guidance, pooled_projection):
|
225 |
+
timesteps_proj = self.time_proj(timestep)
|
226 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
227 |
+
|
228 |
+
guidance_proj = self.time_proj(guidance)
|
229 |
+
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
230 |
+
|
231 |
+
time_guidance_emb = timesteps_emb + guidance_emb
|
232 |
+
|
233 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
234 |
+
conditioning = time_guidance_emb + pooled_projections
|
235 |
+
|
236 |
+
return conditioning
|
237 |
+
|
238 |
+
|
239 |
+
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
240 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
244 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
245 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
246 |
+
|
247 |
+
def forward(self, timestep, pooled_projection):
|
248 |
+
timesteps_proj = self.time_proj(timestep)
|
249 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
250 |
+
|
251 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
252 |
+
|
253 |
+
conditioning = timesteps_emb + pooled_projections
|
254 |
+
|
255 |
+
return conditioning
|
256 |
+
|
257 |
+
|
258 |
+
class HunyuanVideoAdaNorm(nn.Module):
|
259 |
+
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
260 |
+
super().__init__()
|
261 |
+
|
262 |
+
out_features = out_features or 2 * in_features
|
263 |
+
self.linear = nn.Linear(in_features, out_features)
|
264 |
+
self.nonlinearity = nn.SiLU()
|
265 |
+
|
266 |
+
def forward(
|
267 |
+
self, temb: torch.Tensor
|
268 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
269 |
+
temb = self.linear(self.nonlinearity(temb))
|
270 |
+
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
271 |
+
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
272 |
+
return gate_msa, gate_mlp
|
273 |
+
|
274 |
+
|
275 |
+
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
num_attention_heads: int,
|
279 |
+
attention_head_dim: int,
|
280 |
+
mlp_width_ratio: str = 4.0,
|
281 |
+
mlp_drop_rate: float = 0.0,
|
282 |
+
attention_bias: bool = True,
|
283 |
+
) -> None:
|
284 |
+
super().__init__()
|
285 |
+
|
286 |
+
hidden_size = num_attention_heads * attention_head_dim
|
287 |
+
|
288 |
+
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
289 |
+
self.attn = Attention(
|
290 |
+
query_dim=hidden_size,
|
291 |
+
cross_attention_dim=None,
|
292 |
+
heads=num_attention_heads,
|
293 |
+
dim_head=attention_head_dim,
|
294 |
+
bias=attention_bias,
|
295 |
+
)
|
296 |
+
|
297 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
298 |
+
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
299 |
+
|
300 |
+
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
hidden_states: torch.Tensor,
|
305 |
+
temb: torch.Tensor,
|
306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
307 |
+
) -> torch.Tensor:
|
308 |
+
norm_hidden_states = self.norm1(hidden_states)
|
309 |
+
|
310 |
+
attn_output = self.attn(
|
311 |
+
hidden_states=norm_hidden_states,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
attention_mask=attention_mask,
|
314 |
+
)
|
315 |
+
|
316 |
+
gate_msa, gate_mlp = self.norm_out(temb)
|
317 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
318 |
+
|
319 |
+
ff_output = self.ff(self.norm2(hidden_states))
|
320 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
321 |
+
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
|
325 |
+
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
num_attention_heads: int,
|
329 |
+
attention_head_dim: int,
|
330 |
+
num_layers: int,
|
331 |
+
mlp_width_ratio: float = 4.0,
|
332 |
+
mlp_drop_rate: float = 0.0,
|
333 |
+
attention_bias: bool = True,
|
334 |
+
) -> None:
|
335 |
+
super().__init__()
|
336 |
+
|
337 |
+
self.refiner_blocks = nn.ModuleList(
|
338 |
+
[
|
339 |
+
HunyuanVideoIndividualTokenRefinerBlock(
|
340 |
+
num_attention_heads=num_attention_heads,
|
341 |
+
attention_head_dim=attention_head_dim,
|
342 |
+
mlp_width_ratio=mlp_width_ratio,
|
343 |
+
mlp_drop_rate=mlp_drop_rate,
|
344 |
+
attention_bias=attention_bias,
|
345 |
+
)
|
346 |
+
for _ in range(num_layers)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
hidden_states: torch.Tensor,
|
353 |
+
temb: torch.Tensor,
|
354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
355 |
+
) -> None:
|
356 |
+
self_attn_mask = None
|
357 |
+
if attention_mask is not None:
|
358 |
+
batch_size = attention_mask.shape[0]
|
359 |
+
seq_len = attention_mask.shape[1]
|
360 |
+
attention_mask = attention_mask.to(hidden_states.device).bool()
|
361 |
+
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
362 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
363 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
364 |
+
self_attn_mask[:, :, :, 0] = True
|
365 |
+
|
366 |
+
for block in self.refiner_blocks:
|
367 |
+
hidden_states = block(hidden_states, temb, self_attn_mask)
|
368 |
+
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class HunyuanVideoTokenRefiner(nn.Module):
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
in_channels: int,
|
376 |
+
num_attention_heads: int,
|
377 |
+
attention_head_dim: int,
|
378 |
+
num_layers: int,
|
379 |
+
mlp_ratio: float = 4.0,
|
380 |
+
mlp_drop_rate: float = 0.0,
|
381 |
+
attention_bias: bool = True,
|
382 |
+
) -> None:
|
383 |
+
super().__init__()
|
384 |
+
|
385 |
+
hidden_size = num_attention_heads * attention_head_dim
|
386 |
+
|
387 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
388 |
+
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
389 |
+
)
|
390 |
+
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
391 |
+
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
392 |
+
num_attention_heads=num_attention_heads,
|
393 |
+
attention_head_dim=attention_head_dim,
|
394 |
+
num_layers=num_layers,
|
395 |
+
mlp_width_ratio=mlp_ratio,
|
396 |
+
mlp_drop_rate=mlp_drop_rate,
|
397 |
+
attention_bias=attention_bias,
|
398 |
+
)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states: torch.Tensor,
|
403 |
+
timestep: torch.LongTensor,
|
404 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
405 |
+
) -> torch.Tensor:
|
406 |
+
if attention_mask is None:
|
407 |
+
pooled_projections = hidden_states.mean(dim=1)
|
408 |
+
else:
|
409 |
+
original_dtype = hidden_states.dtype
|
410 |
+
mask_float = attention_mask.float().unsqueeze(-1)
|
411 |
+
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
412 |
+
pooled_projections = pooled_projections.to(original_dtype)
|
413 |
+
|
414 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
415 |
+
hidden_states = self.proj_in(hidden_states)
|
416 |
+
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
417 |
+
|
418 |
+
return hidden_states
|
419 |
+
|
420 |
+
|
421 |
+
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
422 |
+
def __init__(self, rope_dim, theta):
|
423 |
+
super().__init__()
|
424 |
+
self.DT, self.DY, self.DX = rope_dim
|
425 |
+
self.theta = theta
|
426 |
+
|
427 |
+
@torch.no_grad()
|
428 |
+
def get_frequency(self, dim, pos):
|
429 |
+
T, H, W = pos.shape
|
430 |
+
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
431 |
+
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
432 |
+
return freqs.cos(), freqs.sin()
|
433 |
+
|
434 |
+
@torch.no_grad()
|
435 |
+
def forward_inner(self, frame_indices, height, width, device):
|
436 |
+
GT, GY, GX = torch.meshgrid(
|
437 |
+
frame_indices.to(device=device, dtype=torch.float32),
|
438 |
+
torch.arange(0, height, device=device, dtype=torch.float32),
|
439 |
+
torch.arange(0, width, device=device, dtype=torch.float32),
|
440 |
+
indexing="ij"
|
441 |
+
)
|
442 |
+
|
443 |
+
FCT, FST = self.get_frequency(self.DT, GT)
|
444 |
+
FCY, FSY = self.get_frequency(self.DY, GY)
|
445 |
+
FCX, FSX = self.get_frequency(self.DX, GX)
|
446 |
+
|
447 |
+
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
448 |
+
|
449 |
+
return result.to(device)
|
450 |
+
|
451 |
+
@torch.no_grad()
|
452 |
+
def forward(self, frame_indices, height, width, device):
|
453 |
+
frame_indices = frame_indices.unbind(0)
|
454 |
+
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
455 |
+
results = torch.stack(results, dim=0)
|
456 |
+
return results
|
457 |
+
|
458 |
+
|
459 |
+
class AdaLayerNormZero(nn.Module):
|
460 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
461 |
+
super().__init__()
|
462 |
+
self.silu = nn.SiLU()
|
463 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
464 |
+
if norm_type == "layer_norm":
|
465 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
466 |
+
else:
|
467 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
x: torch.Tensor,
|
472 |
+
emb: Optional[torch.Tensor] = None,
|
473 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
474 |
+
emb = emb.unsqueeze(-2)
|
475 |
+
emb = self.linear(self.silu(emb))
|
476 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
477 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
478 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
479 |
+
|
480 |
+
|
481 |
+
class AdaLayerNormZeroSingle(nn.Module):
|
482 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
483 |
+
super().__init__()
|
484 |
+
|
485 |
+
self.silu = nn.SiLU()
|
486 |
+
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
487 |
+
if norm_type == "layer_norm":
|
488 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
489 |
+
else:
|
490 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
491 |
+
|
492 |
+
def forward(
|
493 |
+
self,
|
494 |
+
x: torch.Tensor,
|
495 |
+
emb: Optional[torch.Tensor] = None,
|
496 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
497 |
+
emb = emb.unsqueeze(-2)
|
498 |
+
emb = self.linear(self.silu(emb))
|
499 |
+
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
500 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
501 |
+
return x, gate_msa
|
502 |
+
|
503 |
+
|
504 |
+
class AdaLayerNormContinuous(nn.Module):
|
505 |
+
def __init__(
|
506 |
+
self,
|
507 |
+
embedding_dim: int,
|
508 |
+
conditioning_embedding_dim: int,
|
509 |
+
elementwise_affine=True,
|
510 |
+
eps=1e-5,
|
511 |
+
bias=True,
|
512 |
+
norm_type="layer_norm",
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.silu = nn.SiLU()
|
516 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
517 |
+
if norm_type == "layer_norm":
|
518 |
+
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
519 |
+
else:
|
520 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
521 |
+
|
522 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
523 |
+
emb = emb.unsqueeze(-2)
|
524 |
+
emb = self.linear(self.silu(emb))
|
525 |
+
scale, shift = emb.chunk(2, dim=-1)
|
526 |
+
x = self.norm(x) * (1 + scale) + shift
|
527 |
+
return x
|
528 |
+
|
529 |
+
|
530 |
+
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
num_attention_heads: int,
|
534 |
+
attention_head_dim: int,
|
535 |
+
mlp_ratio: float = 4.0,
|
536 |
+
qk_norm: str = "rms_norm",
|
537 |
+
) -> None:
|
538 |
+
super().__init__()
|
539 |
+
|
540 |
+
hidden_size = num_attention_heads * attention_head_dim
|
541 |
+
mlp_dim = int(hidden_size * mlp_ratio)
|
542 |
+
|
543 |
+
self.attn = Attention(
|
544 |
+
query_dim=hidden_size,
|
545 |
+
cross_attention_dim=None,
|
546 |
+
dim_head=attention_head_dim,
|
547 |
+
heads=num_attention_heads,
|
548 |
+
out_dim=hidden_size,
|
549 |
+
bias=True,
|
550 |
+
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
551 |
+
qk_norm=qk_norm,
|
552 |
+
eps=1e-6,
|
553 |
+
pre_only=True,
|
554 |
+
)
|
555 |
+
|
556 |
+
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
557 |
+
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
558 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
559 |
+
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
560 |
+
|
561 |
+
def forward(
|
562 |
+
self,
|
563 |
+
hidden_states: torch.Tensor,
|
564 |
+
encoder_hidden_states: torch.Tensor,
|
565 |
+
temb: torch.Tensor,
|
566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
567 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
568 |
+
) -> torch.Tensor:
|
569 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
570 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
571 |
+
|
572 |
+
residual = hidden_states
|
573 |
+
|
574 |
+
# 1. Input normalization
|
575 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
576 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
577 |
+
|
578 |
+
norm_hidden_states, norm_encoder_hidden_states = (
|
579 |
+
norm_hidden_states[:, :-text_seq_length, :],
|
580 |
+
norm_hidden_states[:, -text_seq_length:, :],
|
581 |
+
)
|
582 |
+
|
583 |
+
# 2. Attention
|
584 |
+
attn_output, context_attn_output = self.attn(
|
585 |
+
hidden_states=norm_hidden_states,
|
586 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
image_rotary_emb=image_rotary_emb,
|
589 |
+
)
|
590 |
+
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
591 |
+
|
592 |
+
# 3. Modulation and residual connection
|
593 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
594 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
595 |
+
hidden_states = hidden_states + residual
|
596 |
+
|
597 |
+
hidden_states, encoder_hidden_states = (
|
598 |
+
hidden_states[:, :-text_seq_length, :],
|
599 |
+
hidden_states[:, -text_seq_length:, :],
|
600 |
+
)
|
601 |
+
return hidden_states, encoder_hidden_states
|
602 |
+
|
603 |
+
|
604 |
+
class HunyuanVideoTransformerBlock(nn.Module):
|
605 |
+
def __init__(
|
606 |
+
self,
|
607 |
+
num_attention_heads: int,
|
608 |
+
attention_head_dim: int,
|
609 |
+
mlp_ratio: float,
|
610 |
+
qk_norm: str = "rms_norm",
|
611 |
+
) -> None:
|
612 |
+
super().__init__()
|
613 |
+
|
614 |
+
hidden_size = num_attention_heads * attention_head_dim
|
615 |
+
|
616 |
+
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
617 |
+
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
618 |
+
|
619 |
+
self.attn = Attention(
|
620 |
+
query_dim=hidden_size,
|
621 |
+
cross_attention_dim=None,
|
622 |
+
added_kv_proj_dim=hidden_size,
|
623 |
+
dim_head=attention_head_dim,
|
624 |
+
heads=num_attention_heads,
|
625 |
+
out_dim=hidden_size,
|
626 |
+
context_pre_only=False,
|
627 |
+
bias=True,
|
628 |
+
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
629 |
+
qk_norm=qk_norm,
|
630 |
+
eps=1e-6,
|
631 |
+
)
|
632 |
+
|
633 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
634 |
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
635 |
+
|
636 |
+
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
637 |
+
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
638 |
+
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
hidden_states: torch.Tensor,
|
642 |
+
encoder_hidden_states: torch.Tensor,
|
643 |
+
temb: torch.Tensor,
|
644 |
+
attention_mask: Optional[torch.Tensor] = None,
|
645 |
+
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
646 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
647 |
+
# 1. Input normalization
|
648 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
649 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
650 |
+
|
651 |
+
# 2. Joint attention
|
652 |
+
attn_output, context_attn_output = self.attn(
|
653 |
+
hidden_states=norm_hidden_states,
|
654 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
655 |
+
attention_mask=attention_mask,
|
656 |
+
image_rotary_emb=freqs_cis,
|
657 |
+
)
|
658 |
+
|
659 |
+
# 3. Modulation and residual connection
|
660 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
661 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
662 |
+
|
663 |
+
norm_hidden_states = self.norm2(hidden_states)
|
664 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
665 |
+
|
666 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
667 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
668 |
+
|
669 |
+
# 4. Feed-forward
|
670 |
+
ff_output = self.ff(norm_hidden_states)
|
671 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
672 |
+
|
673 |
+
hidden_states = hidden_states + gate_mlp * ff_output
|
674 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
675 |
+
|
676 |
+
return hidden_states, encoder_hidden_states
|
677 |
+
|
678 |
+
|
679 |
+
class ClipVisionProjection(nn.Module):
|
680 |
+
def __init__(self, in_channels, out_channels):
|
681 |
+
super().__init__()
|
682 |
+
self.up = nn.Linear(in_channels, out_channels * 3)
|
683 |
+
self.down = nn.Linear(out_channels * 3, out_channels)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
projected_x = self.down(nn.functional.silu(self.up(x)))
|
687 |
+
return projected_x
|
688 |
+
|
689 |
+
|
690 |
+
class HunyuanVideoPatchEmbed(nn.Module):
|
691 |
+
def __init__(self, patch_size, in_chans, embed_dim):
|
692 |
+
super().__init__()
|
693 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
694 |
+
|
695 |
+
|
696 |
+
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
697 |
+
def __init__(self, inner_dim):
|
698 |
+
super().__init__()
|
699 |
+
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
700 |
+
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
701 |
+
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def initialize_weight_from_another_conv3d(self, another_layer):
|
705 |
+
weight = another_layer.weight.detach().clone()
|
706 |
+
bias = another_layer.bias.detach().clone()
|
707 |
+
|
708 |
+
sd = {
|
709 |
+
'proj.weight': weight.clone(),
|
710 |
+
'proj.bias': bias.clone(),
|
711 |
+
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
712 |
+
'proj_2x.bias': bias.clone(),
|
713 |
+
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
714 |
+
'proj_4x.bias': bias.clone(),
|
715 |
+
}
|
716 |
+
|
717 |
+
sd = {k: v.clone() for k, v in sd.items()}
|
718 |
+
|
719 |
+
self.load_state_dict(sd)
|
720 |
+
return
|
721 |
+
|
722 |
+
|
723 |
+
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
724 |
+
@register_to_config
|
725 |
+
def __init__(
|
726 |
+
self,
|
727 |
+
in_channels: int = 16,
|
728 |
+
out_channels: int = 16,
|
729 |
+
num_attention_heads: int = 24,
|
730 |
+
attention_head_dim: int = 128,
|
731 |
+
num_layers: int = 20,
|
732 |
+
num_single_layers: int = 40,
|
733 |
+
num_refiner_layers: int = 2,
|
734 |
+
mlp_ratio: float = 4.0,
|
735 |
+
patch_size: int = 2,
|
736 |
+
patch_size_t: int = 1,
|
737 |
+
qk_norm: str = "rms_norm",
|
738 |
+
guidance_embeds: bool = True,
|
739 |
+
text_embed_dim: int = 4096,
|
740 |
+
pooled_projection_dim: int = 768,
|
741 |
+
rope_theta: float = 256.0,
|
742 |
+
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
743 |
+
has_image_proj=False,
|
744 |
+
image_proj_dim=1152,
|
745 |
+
has_clean_x_embedder=False,
|
746 |
+
) -> None:
|
747 |
+
super().__init__()
|
748 |
+
|
749 |
+
inner_dim = num_attention_heads * attention_head_dim
|
750 |
+
out_channels = out_channels or in_channels
|
751 |
+
|
752 |
+
# 1. Latent and condition embedders
|
753 |
+
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
754 |
+
self.context_embedder = HunyuanVideoTokenRefiner(
|
755 |
+
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
756 |
+
)
|
757 |
+
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
758 |
+
|
759 |
+
self.clean_x_embedder = None
|
760 |
+
self.image_projection = None
|
761 |
+
|
762 |
+
# 2. RoPE
|
763 |
+
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
764 |
+
|
765 |
+
# 3. Dual stream transformer blocks
|
766 |
+
self.transformer_blocks = nn.ModuleList(
|
767 |
+
[
|
768 |
+
HunyuanVideoTransformerBlock(
|
769 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
770 |
+
)
|
771 |
+
for _ in range(num_layers)
|
772 |
+
]
|
773 |
+
)
|
774 |
+
|
775 |
+
# 4. Single stream transformer blocks
|
776 |
+
self.single_transformer_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
HunyuanVideoSingleTransformerBlock(
|
779 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
780 |
+
)
|
781 |
+
for _ in range(num_single_layers)
|
782 |
+
]
|
783 |
+
)
|
784 |
+
|
785 |
+
# 5. Output projection
|
786 |
+
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
787 |
+
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
788 |
+
|
789 |
+
self.inner_dim = inner_dim
|
790 |
+
self.use_gradient_checkpointing = False
|
791 |
+
self.enable_teacache = False
|
792 |
+
|
793 |
+
if has_image_proj:
|
794 |
+
self.install_image_projection(image_proj_dim)
|
795 |
+
|
796 |
+
if has_clean_x_embedder:
|
797 |
+
self.install_clean_x_embedder()
|
798 |
+
|
799 |
+
self.high_quality_fp32_output_for_inference = False
|
800 |
+
|
801 |
+
def install_image_projection(self, in_channels):
|
802 |
+
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
803 |
+
self.config['has_image_proj'] = True
|
804 |
+
self.config['image_proj_dim'] = in_channels
|
805 |
+
|
806 |
+
def install_clean_x_embedder(self):
|
807 |
+
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
808 |
+
self.config['has_clean_x_embedder'] = True
|
809 |
+
|
810 |
+
def enable_gradient_checkpointing(self):
|
811 |
+
self.use_gradient_checkpointing = True
|
812 |
+
print('self.use_gradient_checkpointing = True')
|
813 |
+
|
814 |
+
def disable_gradient_checkpointing(self):
|
815 |
+
self.use_gradient_checkpointing = False
|
816 |
+
print('self.use_gradient_checkpointing = False')
|
817 |
+
|
818 |
+
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
819 |
+
self.enable_teacache = enable_teacache
|
820 |
+
self.cnt = 0
|
821 |
+
self.num_steps = num_steps
|
822 |
+
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
823 |
+
self.accumulated_rel_l1_distance = 0
|
824 |
+
self.previous_modulated_input = None
|
825 |
+
self.previous_residual = None
|
826 |
+
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
827 |
+
|
828 |
+
def gradient_checkpointing_method(self, block, *args):
|
829 |
+
if self.use_gradient_checkpointing:
|
830 |
+
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
831 |
+
else:
|
832 |
+
result = block(*args)
|
833 |
+
return result
|
834 |
+
|
835 |
+
def process_input_hidden_states(
|
836 |
+
self,
|
837 |
+
latents, latent_indices=None,
|
838 |
+
clean_latents=None, clean_latent_indices=None,
|
839 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
840 |
+
clean_latents_4x=None, clean_latent_4x_indices=None
|
841 |
+
):
|
842 |
+
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
843 |
+
B, C, T, H, W = hidden_states.shape
|
844 |
+
|
845 |
+
if latent_indices is None:
|
846 |
+
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
847 |
+
|
848 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
849 |
+
|
850 |
+
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
851 |
+
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
852 |
+
|
853 |
+
if clean_latents is not None and clean_latent_indices is not None:
|
854 |
+
clean_latents = clean_latents.to(hidden_states)
|
855 |
+
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
856 |
+
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
857 |
+
|
858 |
+
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
859 |
+
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
860 |
+
|
861 |
+
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
862 |
+
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
863 |
+
|
864 |
+
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
865 |
+
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
866 |
+
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
867 |
+
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
868 |
+
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
869 |
+
|
870 |
+
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
871 |
+
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
872 |
+
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
873 |
+
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
874 |
+
|
875 |
+
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
876 |
+
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
877 |
+
|
878 |
+
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
879 |
+
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
880 |
+
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
881 |
+
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
882 |
+
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
883 |
+
|
884 |
+
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
885 |
+
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
886 |
+
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
887 |
+
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
888 |
+
|
889 |
+
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
890 |
+
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
891 |
+
|
892 |
+
return hidden_states, rope_freqs
|
893 |
+
|
894 |
+
def forward(
|
895 |
+
self,
|
896 |
+
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
897 |
+
latent_indices=None,
|
898 |
+
clean_latents=None, clean_latent_indices=None,
|
899 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
900 |
+
clean_latents_4x=None, clean_latent_4x_indices=None,
|
901 |
+
image_embeddings=None,
|
902 |
+
attention_kwargs=None, return_dict=True
|
903 |
+
):
|
904 |
+
|
905 |
+
if attention_kwargs is None:
|
906 |
+
attention_kwargs = {}
|
907 |
+
|
908 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
909 |
+
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
910 |
+
post_patch_num_frames = num_frames // p_t
|
911 |
+
post_patch_height = height // p
|
912 |
+
post_patch_width = width // p
|
913 |
+
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
914 |
+
|
915 |
+
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
916 |
+
|
917 |
+
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
918 |
+
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
919 |
+
|
920 |
+
if self.image_projection is not None:
|
921 |
+
assert image_embeddings is not None, 'You must use image embeddings!'
|
922 |
+
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
923 |
+
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
924 |
+
|
925 |
+
# must cat before (not after) encoder_hidden_states, due to attn masking
|
926 |
+
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
927 |
+
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
928 |
+
|
929 |
+
with torch.no_grad():
|
930 |
+
if batch_size == 1:
|
931 |
+
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
932 |
+
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
933 |
+
text_len = encoder_attention_mask.sum().item()
|
934 |
+
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
935 |
+
attention_mask = None, None, None, None
|
936 |
+
else:
|
937 |
+
img_seq_len = hidden_states.shape[1]
|
938 |
+
txt_seq_len = encoder_hidden_states.shape[1]
|
939 |
+
|
940 |
+
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
941 |
+
cu_seqlens_kv = cu_seqlens_q
|
942 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
943 |
+
max_seqlen_kv = max_seqlen_q
|
944 |
+
|
945 |
+
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
946 |
+
|
947 |
+
if self.enable_teacache:
|
948 |
+
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
949 |
+
|
950 |
+
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
951 |
+
should_calc = True
|
952 |
+
self.accumulated_rel_l1_distance = 0
|
953 |
+
else:
|
954 |
+
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
955 |
+
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
956 |
+
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
957 |
+
|
958 |
+
if should_calc:
|
959 |
+
self.accumulated_rel_l1_distance = 0
|
960 |
+
|
961 |
+
self.previous_modulated_input = modulated_inp
|
962 |
+
self.cnt += 1
|
963 |
+
|
964 |
+
if self.cnt == self.num_steps:
|
965 |
+
self.cnt = 0
|
966 |
+
|
967 |
+
if not should_calc:
|
968 |
+
hidden_states = hidden_states + self.previous_residual
|
969 |
+
else:
|
970 |
+
ori_hidden_states = hidden_states.clone()
|
971 |
+
|
972 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
973 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
974 |
+
block,
|
975 |
+
hidden_states,
|
976 |
+
encoder_hidden_states,
|
977 |
+
temb,
|
978 |
+
attention_mask,
|
979 |
+
rope_freqs
|
980 |
+
)
|
981 |
+
|
982 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
983 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
984 |
+
block,
|
985 |
+
hidden_states,
|
986 |
+
encoder_hidden_states,
|
987 |
+
temb,
|
988 |
+
attention_mask,
|
989 |
+
rope_freqs
|
990 |
+
)
|
991 |
+
|
992 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
993 |
+
else:
|
994 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
995 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
996 |
+
block,
|
997 |
+
hidden_states,
|
998 |
+
encoder_hidden_states,
|
999 |
+
temb,
|
1000 |
+
attention_mask,
|
1001 |
+
rope_freqs
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
1005 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
1006 |
+
block,
|
1007 |
+
hidden_states,
|
1008 |
+
encoder_hidden_states,
|
1009 |
+
temb,
|
1010 |
+
attention_mask,
|
1011 |
+
rope_freqs
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
1015 |
+
|
1016 |
+
hidden_states = hidden_states[:, -original_context_length:, :]
|
1017 |
+
|
1018 |
+
if self.high_quality_fp32_output_for_inference:
|
1019 |
+
hidden_states = hidden_states.to(dtype=torch.float32)
|
1020 |
+
if self.proj_out.weight.dtype != torch.float32:
|
1021 |
+
self.proj_out.to(dtype=torch.float32)
|
1022 |
+
|
1023 |
+
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
1024 |
+
|
1025 |
+
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
1026 |
+
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
1027 |
+
pt=p_t, ph=p, pw=p)
|
1028 |
+
|
1029 |
+
if return_dict:
|
1030 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
1031 |
+
|
1032 |
+
return hidden_states,
|
diffusers_helper/pipelines/k_diffusion_hunyuan.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
|
4 |
+
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
5 |
+
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
6 |
+
from diffusers_helper.utils import repeat_to_batch_size
|
7 |
+
|
8 |
+
|
9 |
+
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
10 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
11 |
+
|
12 |
+
|
13 |
+
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
14 |
+
k = (y2 - y1) / (x2 - x1)
|
15 |
+
b = y1 - k * x1
|
16 |
+
mu = k * context_length + b
|
17 |
+
mu = min(mu, math.log(exp_max))
|
18 |
+
return mu
|
19 |
+
|
20 |
+
|
21 |
+
def get_flux_sigmas_from_mu(n, mu):
|
22 |
+
sigmas = torch.linspace(1, 0, steps=n + 1)
|
23 |
+
sigmas = flux_time_shift(sigmas, mu=mu)
|
24 |
+
return sigmas
|
25 |
+
|
26 |
+
|
27 |
+
@torch.inference_mode()
|
28 |
+
def sample_hunyuan(
|
29 |
+
transformer,
|
30 |
+
sampler='unipc',
|
31 |
+
initial_latent=None,
|
32 |
+
concat_latent=None,
|
33 |
+
strength=1.0,
|
34 |
+
width=512,
|
35 |
+
height=512,
|
36 |
+
frames=16,
|
37 |
+
real_guidance_scale=1.0,
|
38 |
+
distilled_guidance_scale=6.0,
|
39 |
+
guidance_rescale=0.0,
|
40 |
+
shift=None,
|
41 |
+
num_inference_steps=25,
|
42 |
+
batch_size=None,
|
43 |
+
generator=None,
|
44 |
+
prompt_embeds=None,
|
45 |
+
prompt_embeds_mask=None,
|
46 |
+
prompt_poolers=None,
|
47 |
+
negative_prompt_embeds=None,
|
48 |
+
negative_prompt_embeds_mask=None,
|
49 |
+
negative_prompt_poolers=None,
|
50 |
+
dtype=torch.bfloat16,
|
51 |
+
device=None,
|
52 |
+
negative_kwargs=None,
|
53 |
+
callback=None,
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
device = device or transformer.device
|
57 |
+
|
58 |
+
if batch_size is None:
|
59 |
+
batch_size = int(prompt_embeds.shape[0])
|
60 |
+
|
61 |
+
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
62 |
+
|
63 |
+
B, C, T, H, W = latents.shape
|
64 |
+
seq_length = T * H * W // 4
|
65 |
+
|
66 |
+
if shift is None:
|
67 |
+
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
68 |
+
else:
|
69 |
+
mu = math.log(shift)
|
70 |
+
|
71 |
+
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
72 |
+
|
73 |
+
k_model = fm_wrapper(transformer)
|
74 |
+
|
75 |
+
if initial_latent is not None:
|
76 |
+
sigmas = sigmas * strength
|
77 |
+
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
78 |
+
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
79 |
+
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
80 |
+
|
81 |
+
if concat_latent is not None:
|
82 |
+
concat_latent = concat_latent.to(latents)
|
83 |
+
|
84 |
+
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
85 |
+
|
86 |
+
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
87 |
+
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
88 |
+
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
89 |
+
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
90 |
+
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
91 |
+
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
92 |
+
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
93 |
+
|
94 |
+
sampler_kwargs = dict(
|
95 |
+
dtype=dtype,
|
96 |
+
cfg_scale=real_guidance_scale,
|
97 |
+
cfg_rescale=guidance_rescale,
|
98 |
+
concat_latent=concat_latent,
|
99 |
+
positive=dict(
|
100 |
+
pooled_projections=prompt_poolers,
|
101 |
+
encoder_hidden_states=prompt_embeds,
|
102 |
+
encoder_attention_mask=prompt_embeds_mask,
|
103 |
+
guidance=distilled_guidance,
|
104 |
+
**kwargs,
|
105 |
+
),
|
106 |
+
negative=dict(
|
107 |
+
pooled_projections=negative_prompt_poolers,
|
108 |
+
encoder_hidden_states=negative_prompt_embeds,
|
109 |
+
encoder_attention_mask=negative_prompt_embeds_mask,
|
110 |
+
guidance=distilled_guidance,
|
111 |
+
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
if sampler == 'unipc':
|
116 |
+
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
117 |
+
else:
|
118 |
+
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
119 |
+
|
120 |
+
return results
|
diffusers_helper/thread_utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from threading import Thread, Lock
|
4 |
+
|
5 |
+
|
6 |
+
class Listener:
|
7 |
+
task_queue = []
|
8 |
+
lock = Lock()
|
9 |
+
thread = None
|
10 |
+
|
11 |
+
@classmethod
|
12 |
+
def _process_tasks(cls):
|
13 |
+
while True:
|
14 |
+
task = None
|
15 |
+
with cls.lock:
|
16 |
+
if cls.task_queue:
|
17 |
+
task = cls.task_queue.pop(0)
|
18 |
+
|
19 |
+
if task is None:
|
20 |
+
time.sleep(0.001)
|
21 |
+
continue
|
22 |
+
|
23 |
+
func, args, kwargs = task
|
24 |
+
try:
|
25 |
+
func(*args, **kwargs)
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error in listener thread: {e}")
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def add_task(cls, func, *args, **kwargs):
|
31 |
+
with cls.lock:
|
32 |
+
cls.task_queue.append((func, args, kwargs))
|
33 |
+
|
34 |
+
if cls.thread is None:
|
35 |
+
cls.thread = Thread(target=cls._process_tasks, daemon=True)
|
36 |
+
cls.thread.start()
|
37 |
+
|
38 |
+
|
39 |
+
def async_run(func, *args, **kwargs):
|
40 |
+
Listener.add_task(func, *args, **kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class FIFOQueue:
|
44 |
+
def __init__(self):
|
45 |
+
self.queue = []
|
46 |
+
self.lock = Lock()
|
47 |
+
|
48 |
+
def push(self, item):
|
49 |
+
with self.lock:
|
50 |
+
self.queue.append(item)
|
51 |
+
|
52 |
+
def pop(self):
|
53 |
+
with self.lock:
|
54 |
+
if self.queue:
|
55 |
+
return self.queue.pop(0)
|
56 |
+
return None
|
57 |
+
|
58 |
+
def top(self):
|
59 |
+
with self.lock:
|
60 |
+
if self.queue:
|
61 |
+
return self.queue[0]
|
62 |
+
return None
|
63 |
+
|
64 |
+
def next(self):
|
65 |
+
while True:
|
66 |
+
with self.lock:
|
67 |
+
if self.queue:
|
68 |
+
return self.queue.pop(0)
|
69 |
+
|
70 |
+
time.sleep(0.001)
|
71 |
+
|
72 |
+
|
73 |
+
class AsyncStream:
|
74 |
+
def __init__(self):
|
75 |
+
self.input_queue = FIFOQueue()
|
76 |
+
self.output_queue = FIFOQueue()
|
diffusers_helper/utils.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
import glob
|
6 |
+
import torch
|
7 |
+
import einops
|
8 |
+
import numpy as np
|
9 |
+
import datetime
|
10 |
+
import torchvision
|
11 |
+
|
12 |
+
import safetensors.torch as sf
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def min_resize(x, m):
|
17 |
+
if x.shape[0] < x.shape[1]:
|
18 |
+
s0 = m
|
19 |
+
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
20 |
+
else:
|
21 |
+
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
22 |
+
s1 = m
|
23 |
+
new_max = max(s1, s0)
|
24 |
+
raw_max = max(x.shape[0], x.shape[1])
|
25 |
+
if new_max < raw_max:
|
26 |
+
interpolation = cv2.INTER_AREA
|
27 |
+
else:
|
28 |
+
interpolation = cv2.INTER_LANCZOS4
|
29 |
+
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
30 |
+
return y
|
31 |
+
|
32 |
+
|
33 |
+
def d_resize(x, y):
|
34 |
+
H, W, C = y.shape
|
35 |
+
new_min = min(H, W)
|
36 |
+
raw_min = min(x.shape[0], x.shape[1])
|
37 |
+
if new_min < raw_min:
|
38 |
+
interpolation = cv2.INTER_AREA
|
39 |
+
else:
|
40 |
+
interpolation = cv2.INTER_LANCZOS4
|
41 |
+
y = cv2.resize(x, (W, H), interpolation=interpolation)
|
42 |
+
return y
|
43 |
+
|
44 |
+
|
45 |
+
def resize_and_center_crop(image, target_width, target_height):
|
46 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
47 |
+
return image
|
48 |
+
|
49 |
+
pil_image = Image.fromarray(image)
|
50 |
+
original_width, original_height = pil_image.size
|
51 |
+
scale_factor = max(target_width / original_width, target_height / original_height)
|
52 |
+
resized_width = int(round(original_width * scale_factor))
|
53 |
+
resized_height = int(round(original_height * scale_factor))
|
54 |
+
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
55 |
+
left = (resized_width - target_width) / 2
|
56 |
+
top = (resized_height - target_height) / 2
|
57 |
+
right = (resized_width + target_width) / 2
|
58 |
+
bottom = (resized_height + target_height) / 2
|
59 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
60 |
+
return np.array(cropped_image)
|
61 |
+
|
62 |
+
|
63 |
+
def resize_and_center_crop_pytorch(image, target_width, target_height):
|
64 |
+
B, C, H, W = image.shape
|
65 |
+
|
66 |
+
if H == target_height and W == target_width:
|
67 |
+
return image
|
68 |
+
|
69 |
+
scale_factor = max(target_width / W, target_height / H)
|
70 |
+
resized_width = int(round(W * scale_factor))
|
71 |
+
resized_height = int(round(H * scale_factor))
|
72 |
+
|
73 |
+
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
|
74 |
+
|
75 |
+
top = (resized_height - target_height) // 2
|
76 |
+
left = (resized_width - target_width) // 2
|
77 |
+
cropped = resized[:, :, top:top + target_height, left:left + target_width]
|
78 |
+
|
79 |
+
return cropped
|
80 |
+
|
81 |
+
|
82 |
+
def resize_without_crop(image, target_width, target_height):
|
83 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
84 |
+
return image
|
85 |
+
|
86 |
+
pil_image = Image.fromarray(image)
|
87 |
+
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
88 |
+
return np.array(resized_image)
|
89 |
+
|
90 |
+
|
91 |
+
def just_crop(image, w, h):
|
92 |
+
if h == image.shape[0] and w == image.shape[1]:
|
93 |
+
return image
|
94 |
+
|
95 |
+
original_height, original_width = image.shape[:2]
|
96 |
+
k = min(original_height / h, original_width / w)
|
97 |
+
new_width = int(round(w * k))
|
98 |
+
new_height = int(round(h * k))
|
99 |
+
x_start = (original_width - new_width) // 2
|
100 |
+
y_start = (original_height - new_height) // 2
|
101 |
+
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
|
102 |
+
return cropped_image
|
103 |
+
|
104 |
+
|
105 |
+
def write_to_json(data, file_path):
|
106 |
+
temp_file_path = file_path + ".tmp"
|
107 |
+
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
108 |
+
json.dump(data, temp_file, indent=4)
|
109 |
+
os.replace(temp_file_path, file_path)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
def read_from_json(file_path):
|
114 |
+
with open(file_path, 'rt', encoding='utf-8') as file:
|
115 |
+
data = json.load(file)
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def get_active_parameters(m):
|
120 |
+
return {k: v for k, v in m.named_parameters() if v.requires_grad}
|
121 |
+
|
122 |
+
|
123 |
+
def cast_training_params(m, dtype=torch.float32):
|
124 |
+
result = {}
|
125 |
+
for n, param in m.named_parameters():
|
126 |
+
if param.requires_grad:
|
127 |
+
param.data = param.to(dtype)
|
128 |
+
result[n] = param
|
129 |
+
return result
|
130 |
+
|
131 |
+
|
132 |
+
def separate_lora_AB(parameters, B_patterns=None):
|
133 |
+
parameters_normal = {}
|
134 |
+
parameters_B = {}
|
135 |
+
|
136 |
+
if B_patterns is None:
|
137 |
+
B_patterns = ['.lora_B.', '__zero__']
|
138 |
+
|
139 |
+
for k, v in parameters.items():
|
140 |
+
if any(B_pattern in k for B_pattern in B_patterns):
|
141 |
+
parameters_B[k] = v
|
142 |
+
else:
|
143 |
+
parameters_normal[k] = v
|
144 |
+
|
145 |
+
return parameters_normal, parameters_B
|
146 |
+
|
147 |
+
|
148 |
+
def set_attr_recursive(obj, attr, value):
|
149 |
+
attrs = attr.split(".")
|
150 |
+
for name in attrs[:-1]:
|
151 |
+
obj = getattr(obj, name)
|
152 |
+
setattr(obj, attrs[-1], value)
|
153 |
+
return
|
154 |
+
|
155 |
+
|
156 |
+
def print_tensor_list_size(tensors):
|
157 |
+
total_size = 0
|
158 |
+
total_elements = 0
|
159 |
+
|
160 |
+
if isinstance(tensors, dict):
|
161 |
+
tensors = tensors.values()
|
162 |
+
|
163 |
+
for tensor in tensors:
|
164 |
+
total_size += tensor.nelement() * tensor.element_size()
|
165 |
+
total_elements += tensor.nelement()
|
166 |
+
|
167 |
+
total_size_MB = total_size / (1024 ** 2)
|
168 |
+
total_elements_B = total_elements / 1e9
|
169 |
+
|
170 |
+
print(f"Total number of tensors: {len(tensors)}")
|
171 |
+
print(f"Total size of tensors: {total_size_MB:.2f} MB")
|
172 |
+
print(f"Total number of parameters: {total_elements_B:.3f} billion")
|
173 |
+
return
|
174 |
+
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
|
178 |
+
batch_size = a.size(0)
|
179 |
+
|
180 |
+
if b is None:
|
181 |
+
b = torch.zeros_like(a)
|
182 |
+
|
183 |
+
if mask_a is None:
|
184 |
+
mask_a = torch.rand(batch_size) < probability_a
|
185 |
+
|
186 |
+
mask_a = mask_a.to(a.device)
|
187 |
+
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
188 |
+
result = torch.where(mask_a, a, b)
|
189 |
+
return result
|
190 |
+
|
191 |
+
|
192 |
+
@torch.no_grad()
|
193 |
+
def zero_module(module):
|
194 |
+
for p in module.parameters():
|
195 |
+
p.detach().zero_()
|
196 |
+
return module
|
197 |
+
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def supress_lower_channels(m, k, alpha=0.01):
|
201 |
+
data = m.weight.data.clone()
|
202 |
+
|
203 |
+
assert int(data.shape[1]) >= k
|
204 |
+
|
205 |
+
data[:, :k] = data[:, :k] * alpha
|
206 |
+
m.weight.data = data.contiguous().clone()
|
207 |
+
return m
|
208 |
+
|
209 |
+
|
210 |
+
def freeze_module(m):
|
211 |
+
if not hasattr(m, '_forward_inside_frozen_module'):
|
212 |
+
m._forward_inside_frozen_module = m.forward
|
213 |
+
m.requires_grad_(False)
|
214 |
+
m.forward = torch.no_grad()(m.forward)
|
215 |
+
return m
|
216 |
+
|
217 |
+
|
218 |
+
def get_latest_safetensors(folder_path):
|
219 |
+
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
|
220 |
+
|
221 |
+
if not safetensors_files:
|
222 |
+
raise ValueError('No file to resume!')
|
223 |
+
|
224 |
+
latest_file = max(safetensors_files, key=os.path.getmtime)
|
225 |
+
latest_file = os.path.abspath(os.path.realpath(latest_file))
|
226 |
+
return latest_file
|
227 |
+
|
228 |
+
|
229 |
+
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
230 |
+
tags = tags_str.split(', ')
|
231 |
+
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
232 |
+
prompt = ', '.join(tags)
|
233 |
+
return prompt
|
234 |
+
|
235 |
+
|
236 |
+
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
|
237 |
+
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
|
238 |
+
if round_to_int:
|
239 |
+
numbers = np.round(numbers).astype(int)
|
240 |
+
return numbers.tolist()
|
241 |
+
|
242 |
+
|
243 |
+
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
|
244 |
+
edges = np.linspace(0, 1, n + 1)
|
245 |
+
points = np.random.uniform(edges[:-1], edges[1:])
|
246 |
+
numbers = inclusive + (exclusive - inclusive) * points
|
247 |
+
if round_to_int:
|
248 |
+
numbers = np.round(numbers).astype(int)
|
249 |
+
return numbers.tolist()
|
250 |
+
|
251 |
+
|
252 |
+
def soft_append_bcthw(history, current, overlap=0):
|
253 |
+
if overlap <= 0:
|
254 |
+
return torch.cat([history, current], dim=2)
|
255 |
+
|
256 |
+
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
|
257 |
+
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
|
258 |
+
|
259 |
+
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
|
260 |
+
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
|
261 |
+
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
|
262 |
+
|
263 |
+
return output.to(history)
|
264 |
+
|
265 |
+
|
266 |
+
def save_bcthw_as_mp4(x, output_filename, fps=10, crf=0):
|
267 |
+
b, c, t, h, w = x.shape
|
268 |
+
|
269 |
+
per_row = b
|
270 |
+
for p in [6, 5, 4, 3, 2]:
|
271 |
+
if b % p == 0:
|
272 |
+
per_row = p
|
273 |
+
break
|
274 |
+
|
275 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
276 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
277 |
+
x = x.detach().cpu().to(torch.uint8)
|
278 |
+
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
279 |
+
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': str(int(crf))})
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
def save_bcthw_as_png(x, output_filename):
|
284 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
285 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
286 |
+
x = x.detach().cpu().to(torch.uint8)
|
287 |
+
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
288 |
+
torchvision.io.write_png(x, output_filename)
|
289 |
+
return output_filename
|
290 |
+
|
291 |
+
|
292 |
+
def save_bchw_as_png(x, output_filename):
|
293 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
294 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
295 |
+
x = x.detach().cpu().to(torch.uint8)
|
296 |
+
x = einops.rearrange(x, 'b c h w -> c h (b w)')
|
297 |
+
torchvision.io.write_png(x, output_filename)
|
298 |
+
return output_filename
|
299 |
+
|
300 |
+
|
301 |
+
def add_tensors_with_padding(tensor1, tensor2):
|
302 |
+
if tensor1.shape == tensor2.shape:
|
303 |
+
return tensor1 + tensor2
|
304 |
+
|
305 |
+
shape1 = tensor1.shape
|
306 |
+
shape2 = tensor2.shape
|
307 |
+
|
308 |
+
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
309 |
+
|
310 |
+
padded_tensor1 = torch.zeros(new_shape)
|
311 |
+
padded_tensor2 = torch.zeros(new_shape)
|
312 |
+
|
313 |
+
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
314 |
+
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
315 |
+
|
316 |
+
result = padded_tensor1 + padded_tensor2
|
317 |
+
return result
|
318 |
+
|
319 |
+
|
320 |
+
def print_free_mem():
|
321 |
+
torch.cuda.empty_cache()
|
322 |
+
free_mem, total_mem = torch.cuda.mem_get_info(0)
|
323 |
+
free_mem_mb = free_mem / (1024 ** 2)
|
324 |
+
total_mem_mb = total_mem / (1024 ** 2)
|
325 |
+
print(f"Free memory: {free_mem_mb:.2f} MB")
|
326 |
+
print(f"Total memory: {total_mem_mb:.2f} MB")
|
327 |
+
return
|
328 |
+
|
329 |
+
|
330 |
+
def print_gpu_parameters(device, state_dict, log_count=1):
|
331 |
+
summary = {"device": device, "keys_count": len(state_dict)}
|
332 |
+
|
333 |
+
logged_params = {}
|
334 |
+
for i, (key, tensor) in enumerate(state_dict.items()):
|
335 |
+
if i >= log_count:
|
336 |
+
break
|
337 |
+
logged_params[key] = tensor.flatten()[:3].tolist()
|
338 |
+
|
339 |
+
summary["params"] = logged_params
|
340 |
+
|
341 |
+
print(str(summary))
|
342 |
+
return
|
343 |
+
|
344 |
+
|
345 |
+
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
|
346 |
+
from PIL import Image, ImageDraw, ImageFont
|
347 |
+
|
348 |
+
txt = Image.new("RGB", (width, height), color="white")
|
349 |
+
draw = ImageDraw.Draw(txt)
|
350 |
+
font = ImageFont.truetype(font_path, size=size)
|
351 |
+
|
352 |
+
if text == '':
|
353 |
+
return np.array(txt)
|
354 |
+
|
355 |
+
# Split text into lines that fit within the image width
|
356 |
+
lines = []
|
357 |
+
words = text.split()
|
358 |
+
current_line = words[0]
|
359 |
+
|
360 |
+
for word in words[1:]:
|
361 |
+
line_with_word = f"{current_line} {word}"
|
362 |
+
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
|
363 |
+
current_line = line_with_word
|
364 |
+
else:
|
365 |
+
lines.append(current_line)
|
366 |
+
current_line = word
|
367 |
+
|
368 |
+
lines.append(current_line)
|
369 |
+
|
370 |
+
# Draw the text line by line
|
371 |
+
y = 0
|
372 |
+
line_height = draw.textbbox((0, 0), "A", font=font)[3]
|
373 |
+
|
374 |
+
for line in lines:
|
375 |
+
if y + line_height > height:
|
376 |
+
break # stop drawing if the next line will be outside the image
|
377 |
+
draw.text((0, y), line, fill="black", font=font)
|
378 |
+
y += line_height
|
379 |
+
|
380 |
+
return np.array(txt)
|
381 |
+
|
382 |
+
|
383 |
+
def blue_mark(x):
|
384 |
+
x = x.copy()
|
385 |
+
c = x[:, :, 2]
|
386 |
+
b = cv2.blur(c, (9, 9))
|
387 |
+
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
|
388 |
+
return x
|
389 |
+
|
390 |
+
|
391 |
+
def green_mark(x):
|
392 |
+
x = x.copy()
|
393 |
+
x[:, :, 2] = -1
|
394 |
+
x[:, :, 0] = -1
|
395 |
+
return x
|
396 |
+
|
397 |
+
|
398 |
+
def frame_mark(x):
|
399 |
+
x = x.copy()
|
400 |
+
x[:64] = -1
|
401 |
+
x[-64:] = -1
|
402 |
+
x[:, :8] = 1
|
403 |
+
x[:, -8:] = 1
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
@torch.inference_mode()
|
408 |
+
def pytorch2numpy(imgs):
|
409 |
+
results = []
|
410 |
+
for x in imgs:
|
411 |
+
y = x.movedim(0, -1)
|
412 |
+
y = y * 127.5 + 127.5
|
413 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
414 |
+
results.append(y)
|
415 |
+
return results
|
416 |
+
|
417 |
+
|
418 |
+
@torch.inference_mode()
|
419 |
+
def numpy2pytorch(imgs):
|
420 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
421 |
+
h = h.movedim(-1, 1)
|
422 |
+
return h
|
423 |
+
|
424 |
+
|
425 |
+
@torch.no_grad()
|
426 |
+
def duplicate_prefix_to_suffix(x, count, zero_out=False):
|
427 |
+
if zero_out:
|
428 |
+
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
|
429 |
+
else:
|
430 |
+
return torch.cat([x, x[:count]], dim=0)
|
431 |
+
|
432 |
+
|
433 |
+
def weighted_mse(a, b, weight):
|
434 |
+
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
|
435 |
+
|
436 |
+
|
437 |
+
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
|
438 |
+
x = (x - x_min) / (x_max - x_min)
|
439 |
+
x = max(0.0, min(x, 1.0))
|
440 |
+
x = x ** sigma
|
441 |
+
return y_min + x * (y_max - y_min)
|
442 |
+
|
443 |
+
|
444 |
+
def expand_to_dims(x, target_dims):
|
445 |
+
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
|
446 |
+
|
447 |
+
|
448 |
+
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
|
449 |
+
if tensor is None:
|
450 |
+
return None
|
451 |
+
|
452 |
+
first_dim = tensor.shape[0]
|
453 |
+
|
454 |
+
if first_dim == batch_size:
|
455 |
+
return tensor
|
456 |
+
|
457 |
+
if batch_size % first_dim != 0:
|
458 |
+
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
|
459 |
+
|
460 |
+
repeat_times = batch_size // first_dim
|
461 |
+
|
462 |
+
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
|
463 |
+
|
464 |
+
|
465 |
+
def dim5(x):
|
466 |
+
return expand_to_dims(x, 5)
|
467 |
+
|
468 |
+
|
469 |
+
def dim4(x):
|
470 |
+
return expand_to_dims(x, 4)
|
471 |
+
|
472 |
+
|
473 |
+
def dim3(x):
|
474 |
+
return expand_to_dims(x, 3)
|
475 |
+
|
476 |
+
|
477 |
+
def crop_or_pad_yield_mask(x, length):
|
478 |
+
B, F, C = x.shape
|
479 |
+
device = x.device
|
480 |
+
dtype = x.dtype
|
481 |
+
|
482 |
+
if F < length:
|
483 |
+
y = torch.zeros((B, length, C), dtype=dtype, device=device)
|
484 |
+
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
|
485 |
+
y[:, :F, :] = x
|
486 |
+
mask[:, :F] = True
|
487 |
+
return y, mask
|
488 |
+
|
489 |
+
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
|
490 |
+
|
491 |
+
|
492 |
+
def extend_dim(x, dim, minimal_length, zero_pad=False):
|
493 |
+
original_length = int(x.shape[dim])
|
494 |
+
|
495 |
+
if original_length >= minimal_length:
|
496 |
+
return x
|
497 |
+
|
498 |
+
if zero_pad:
|
499 |
+
padding_shape = list(x.shape)
|
500 |
+
padding_shape[dim] = minimal_length - original_length
|
501 |
+
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
|
502 |
+
else:
|
503 |
+
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
|
504 |
+
last_element = x[idx]
|
505 |
+
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
|
506 |
+
|
507 |
+
return torch.cat([x, padding], dim=dim)
|
508 |
+
|
509 |
+
|
510 |
+
def lazy_positional_encoding(t, repeats=None):
|
511 |
+
if not isinstance(t, list):
|
512 |
+
t = [t]
|
513 |
+
|
514 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
515 |
+
|
516 |
+
te = torch.tensor(t)
|
517 |
+
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
|
518 |
+
|
519 |
+
if repeats is None:
|
520 |
+
return te
|
521 |
+
|
522 |
+
te = te[:, None, :].expand(-1, repeats, -1)
|
523 |
+
|
524 |
+
return te
|
525 |
+
|
526 |
+
|
527 |
+
def state_dict_offset_merge(A, B, C=None):
|
528 |
+
result = {}
|
529 |
+
keys = A.keys()
|
530 |
+
|
531 |
+
for key in keys:
|
532 |
+
A_value = A[key]
|
533 |
+
B_value = B[key].to(A_value)
|
534 |
+
|
535 |
+
if C is None:
|
536 |
+
result[key] = A_value + B_value
|
537 |
+
else:
|
538 |
+
C_value = C[key].to(A_value)
|
539 |
+
result[key] = A_value + B_value - C_value
|
540 |
+
|
541 |
+
return result
|
542 |
+
|
543 |
+
|
544 |
+
def state_dict_weighted_merge(state_dicts, weights):
|
545 |
+
if len(state_dicts) != len(weights):
|
546 |
+
raise ValueError("Number of state dictionaries must match number of weights")
|
547 |
+
|
548 |
+
if not state_dicts:
|
549 |
+
return {}
|
550 |
+
|
551 |
+
total_weight = sum(weights)
|
552 |
+
|
553 |
+
if total_weight == 0:
|
554 |
+
raise ValueError("Sum of weights cannot be zero")
|
555 |
+
|
556 |
+
normalized_weights = [w / total_weight for w in weights]
|
557 |
+
|
558 |
+
keys = state_dicts[0].keys()
|
559 |
+
result = {}
|
560 |
+
|
561 |
+
for key in keys:
|
562 |
+
result[key] = state_dicts[0][key] * normalized_weights[0]
|
563 |
+
|
564 |
+
for i in range(1, len(state_dicts)):
|
565 |
+
state_dict_value = state_dicts[i][key].to(result[key])
|
566 |
+
result[key] += state_dict_value * normalized_weights[i]
|
567 |
+
|
568 |
+
return result
|
569 |
+
|
570 |
+
|
571 |
+
def group_files_by_folder(all_files):
|
572 |
+
grouped_files = {}
|
573 |
+
|
574 |
+
for file in all_files:
|
575 |
+
folder_name = os.path.basename(os.path.dirname(file))
|
576 |
+
if folder_name not in grouped_files:
|
577 |
+
grouped_files[folder_name] = []
|
578 |
+
grouped_files[folder_name].append(file)
|
579 |
+
|
580 |
+
list_of_lists = list(grouped_files.values())
|
581 |
+
return list_of_lists
|
582 |
+
|
583 |
+
|
584 |
+
def generate_timestamp():
|
585 |
+
now = datetime.datetime.now()
|
586 |
+
timestamp = now.strftime('%y%m%d_%H%M%S')
|
587 |
+
milliseconds = f"{int(now.microsecond / 1000):03d}"
|
588 |
+
random_number = random.randint(0, 9999)
|
589 |
+
return f"{timestamp}_{milliseconds}_{random_number}"
|
590 |
+
|
591 |
+
|
592 |
+
def write_PIL_image_with_png_info(image, metadata, path):
|
593 |
+
from PIL.PngImagePlugin import PngInfo
|
594 |
+
|
595 |
+
png_info = PngInfo()
|
596 |
+
for key, value in metadata.items():
|
597 |
+
png_info.add_text(key, value)
|
598 |
+
|
599 |
+
image.save(path, "PNG", pnginfo=png_info)
|
600 |
+
return image
|
601 |
+
|
602 |
+
|
603 |
+
def torch_safe_save(content, path):
|
604 |
+
torch.save(content, path + '_tmp')
|
605 |
+
os.replace(path + '_tmp', path)
|
606 |
+
return path
|
607 |
+
|
608 |
+
|
609 |
+
def move_optimizer_to_device(optimizer, device):
|
610 |
+
for state in optimizer.state.values():
|
611 |
+
for k, v in state.items():
|
612 |
+
if isinstance(v, torch.Tensor):
|
613 |
+
state[k] = v.to(device)
|
modules/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# modules/__init__.py
|
2 |
+
|
modules/generators/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .original_generator import OriginalModelGenerator
|
2 |
+
from .f1_generator import F1ModelGenerator
|
3 |
+
|
4 |
+
def create_model_generator(model_type, **kwargs):
|
5 |
+
"""
|
6 |
+
Create a model generator based on the model type.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
model_type: The type of model to create ("Original" or "F1")
|
10 |
+
**kwargs: Additional arguments to pass to the model generator constructor
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
A model generator instance
|
14 |
+
|
15 |
+
Raises:
|
16 |
+
ValueError: If the model type is not supported
|
17 |
+
"""
|
18 |
+
if model_type == "Original":
|
19 |
+
return OriginalModelGenerator(**kwargs)
|
20 |
+
elif model_type == "F1":
|
21 |
+
return F1ModelGenerator(**kwargs)
|
22 |
+
else:
|
23 |
+
raise ValueError(f"Unsupported model type: {model_type}")
|
modules/generators/base_generator.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from diffusers_helper import lora_utils
|
4 |
+
|
5 |
+
class BaseModelGenerator(ABC):
|
6 |
+
"""
|
7 |
+
Base class for model generators.
|
8 |
+
This defines the common interface that all model generators must implement.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self,
|
12 |
+
text_encoder,
|
13 |
+
text_encoder_2,
|
14 |
+
tokenizer,
|
15 |
+
tokenizer_2,
|
16 |
+
vae,
|
17 |
+
image_encoder,
|
18 |
+
feature_extractor,
|
19 |
+
high_vram=False,
|
20 |
+
prompt_embedding_cache=None,
|
21 |
+
settings=None):
|
22 |
+
"""
|
23 |
+
Initialize the base model generator.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
text_encoder: The text encoder model
|
27 |
+
text_encoder_2: The second text encoder model
|
28 |
+
tokenizer: The tokenizer for the first text encoder
|
29 |
+
tokenizer_2: The tokenizer for the second text encoder
|
30 |
+
vae: The VAE model
|
31 |
+
image_encoder: The image encoder model
|
32 |
+
feature_extractor: The feature extractor
|
33 |
+
high_vram: Whether high VRAM mode is enabled
|
34 |
+
prompt_embedding_cache: Cache for prompt embeddings
|
35 |
+
settings: Application settings
|
36 |
+
"""
|
37 |
+
self.text_encoder = text_encoder
|
38 |
+
self.text_encoder_2 = text_encoder_2
|
39 |
+
self.tokenizer = tokenizer
|
40 |
+
self.tokenizer_2 = tokenizer_2
|
41 |
+
self.vae = vae
|
42 |
+
self.image_encoder = image_encoder
|
43 |
+
self.feature_extractor = feature_extractor
|
44 |
+
self.high_vram = high_vram
|
45 |
+
self.prompt_embedding_cache = prompt_embedding_cache or {}
|
46 |
+
self.settings = settings
|
47 |
+
self.transformer = None
|
48 |
+
self.gpu = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
self.cpu = torch.device("cpu")
|
50 |
+
|
51 |
+
@abstractmethod
|
52 |
+
def load_model(self):
|
53 |
+
"""
|
54 |
+
Load the transformer model.
|
55 |
+
This method should be implemented by each specific model generator.
|
56 |
+
"""
|
57 |
+
pass
|
58 |
+
|
59 |
+
@abstractmethod
|
60 |
+
def get_model_name(self):
|
61 |
+
"""
|
62 |
+
Get the name of the model.
|
63 |
+
This method should be implemented by each specific model generator.
|
64 |
+
"""
|
65 |
+
pass
|
66 |
+
|
67 |
+
def unload_loras(self):
|
68 |
+
"""
|
69 |
+
Unload all LoRAs from the transformer model.
|
70 |
+
"""
|
71 |
+
if self.transformer is not None:
|
72 |
+
print(f"Unloading all LoRAs from {self.get_model_name()} model")
|
73 |
+
self.transformer = lora_utils.unload_all_loras(self.transformer)
|
74 |
+
self.verify_lora_state("After unloading LoRAs")
|
75 |
+
import gc
|
76 |
+
gc.collect()
|
77 |
+
if torch.cuda.is_available():
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
|
80 |
+
def verify_lora_state(self, label=""):
|
81 |
+
"""
|
82 |
+
Debug function to verify the state of LoRAs in the transformer model.
|
83 |
+
"""
|
84 |
+
if self.transformer is None:
|
85 |
+
print(f"[{label}] Transformer is None, cannot verify LoRA state")
|
86 |
+
return
|
87 |
+
|
88 |
+
has_loras = False
|
89 |
+
if hasattr(self.transformer, 'peft_config'):
|
90 |
+
adapter_names = list(self.transformer.peft_config.keys()) if self.transformer.peft_config else []
|
91 |
+
if adapter_names:
|
92 |
+
has_loras = True
|
93 |
+
print(f"[{label}] Transformer has LoRAs: {', '.join(adapter_names)}")
|
94 |
+
else:
|
95 |
+
print(f"[{label}] Transformer has no LoRAs in peft_config")
|
96 |
+
else:
|
97 |
+
print(f"[{label}] Transformer has no peft_config attribute")
|
98 |
+
|
99 |
+
# Check for any LoRA modules
|
100 |
+
for name, module in self.transformer.named_modules():
|
101 |
+
if hasattr(module, 'lora_A') and module.lora_A:
|
102 |
+
has_loras = True
|
103 |
+
# print(f"[{label}] Found lora_A in module {name}")
|
104 |
+
if hasattr(module, 'lora_B') and module.lora_B:
|
105 |
+
has_loras = True
|
106 |
+
# print(f"[{label}] Found lora_B in module {name}")
|
107 |
+
|
108 |
+
if not has_loras:
|
109 |
+
print(f"[{label}] No LoRA components found in transformer")
|
110 |
+
|
111 |
+
def move_lora_adapters_to_device(self, target_device):
|
112 |
+
"""
|
113 |
+
Move all LoRA adapters in the transformer model to the specified device.
|
114 |
+
This handles the PEFT implementation of LoRA.
|
115 |
+
"""
|
116 |
+
if self.transformer is None:
|
117 |
+
return
|
118 |
+
|
119 |
+
print(f"Moving all LoRA adapters to {target_device}")
|
120 |
+
|
121 |
+
# First, find all modules with LoRA adapters
|
122 |
+
lora_modules = []
|
123 |
+
for name, module in self.transformer.named_modules():
|
124 |
+
if hasattr(module, 'active_adapter') and hasattr(module, 'lora_A') and hasattr(module, 'lora_B'):
|
125 |
+
lora_modules.append((name, module))
|
126 |
+
|
127 |
+
# Now move all LoRA components to the target device
|
128 |
+
for name, module in lora_modules:
|
129 |
+
# Get the active adapter name
|
130 |
+
active_adapter = module.active_adapter
|
131 |
+
|
132 |
+
# Move the LoRA layers to the target device
|
133 |
+
if active_adapter is not None:
|
134 |
+
if isinstance(module.lora_A, torch.nn.ModuleDict):
|
135 |
+
# Handle ModuleDict case (PEFT implementation)
|
136 |
+
for adapter_name in list(module.lora_A.keys()):
|
137 |
+
# Move lora_A
|
138 |
+
if adapter_name in module.lora_A:
|
139 |
+
module.lora_A[adapter_name] = module.lora_A[adapter_name].to(target_device)
|
140 |
+
|
141 |
+
# Move lora_B
|
142 |
+
if adapter_name in module.lora_B:
|
143 |
+
module.lora_B[adapter_name] = module.lora_B[adapter_name].to(target_device)
|
144 |
+
|
145 |
+
# Move scaling
|
146 |
+
if hasattr(module, 'scaling') and isinstance(module.scaling, dict) and adapter_name in module.scaling:
|
147 |
+
if isinstance(module.scaling[adapter_name], torch.Tensor):
|
148 |
+
module.scaling[adapter_name] = module.scaling[adapter_name].to(target_device)
|
149 |
+
else:
|
150 |
+
# Handle direct attribute case
|
151 |
+
if hasattr(module, 'lora_A') and module.lora_A is not None:
|
152 |
+
module.lora_A = module.lora_A.to(target_device)
|
153 |
+
if hasattr(module, 'lora_B') and module.lora_B is not None:
|
154 |
+
module.lora_B = module.lora_B.to(target_device)
|
155 |
+
if hasattr(module, 'scaling') and module.scaling is not None:
|
156 |
+
if isinstance(module.scaling, torch.Tensor):
|
157 |
+
module.scaling = module.scaling.to(target_device)
|
158 |
+
|
159 |
+
print(f"Moved all LoRA adapters to {target_device}")
|
160 |
+
|
161 |
+
def load_loras(self, selected_loras, lora_folder, lora_loaded_names, lora_values=None):
|
162 |
+
"""
|
163 |
+
Load LoRAs into the transformer model.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
selected_loras: List of LoRA names to load
|
167 |
+
lora_folder: Folder containing the LoRA files
|
168 |
+
lora_loaded_names: List of loaded LoRA names
|
169 |
+
lora_values: Optional list of LoRA strength values
|
170 |
+
"""
|
171 |
+
if self.transformer is None:
|
172 |
+
print("Cannot load LoRAs: Transformer model is not loaded")
|
173 |
+
return
|
174 |
+
|
175 |
+
import os
|
176 |
+
|
177 |
+
# Ensure all LoRAs are unloaded first
|
178 |
+
self.unload_loras()
|
179 |
+
|
180 |
+
# Load each selected LoRA
|
181 |
+
for lora_name in selected_loras:
|
182 |
+
try:
|
183 |
+
idx = lora_loaded_names.index(lora_name)
|
184 |
+
lora_file = None
|
185 |
+
for ext in [".safetensors", ".pt"]:
|
186 |
+
# Find any file that starts with the lora_name and ends with the extension
|
187 |
+
matching_files = [f for f in os.listdir(lora_folder)
|
188 |
+
if f.startswith(lora_name) and f.endswith(ext)]
|
189 |
+
if matching_files:
|
190 |
+
lora_file = matching_files[0] # Use the first matching file
|
191 |
+
break
|
192 |
+
|
193 |
+
if lora_file:
|
194 |
+
print(f"Loading LoRA {lora_file} to {self.get_model_name()} model")
|
195 |
+
self.transformer = lora_utils.load_lora(self.transformer, lora_folder, lora_file)
|
196 |
+
|
197 |
+
# Set LoRA strength if provided
|
198 |
+
if lora_values and idx < len(lora_values):
|
199 |
+
lora_strength = float(lora_values[idx])
|
200 |
+
print(f"Setting LoRA {lora_name} strength to {lora_strength}")
|
201 |
+
|
202 |
+
# Set scaling for this LoRA by iterating through modules
|
203 |
+
for name, module in self.transformer.named_modules():
|
204 |
+
if hasattr(module, 'scaling'):
|
205 |
+
if isinstance(module.scaling, dict):
|
206 |
+
# Handle ModuleDict case (PEFT implementation)
|
207 |
+
if lora_name in module.scaling:
|
208 |
+
if isinstance(module.scaling[lora_name], torch.Tensor):
|
209 |
+
module.scaling[lora_name] = torch.tensor(
|
210 |
+
lora_strength, device=module.scaling[lora_name].device
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
module.scaling[lora_name] = lora_strength
|
214 |
+
else:
|
215 |
+
# Handle direct attribute case for scaling if needed
|
216 |
+
if isinstance(module.scaling, torch.Tensor):
|
217 |
+
module.scaling = torch.tensor(
|
218 |
+
lora_strength, device=module.scaling.device
|
219 |
+
)
|
220 |
+
else:
|
221 |
+
module.scaling = lora_strength
|
222 |
+
else:
|
223 |
+
print(f"LoRA file for {lora_name} not found!")
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Error loading LoRA {lora_name}: {e}")
|
226 |
+
|
227 |
+
# Verify LoRA state after loading
|
228 |
+
self.verify_lora_state("After loading LoRAs")
|
modules/generators/f1_generator.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
3 |
+
from diffusers_helper.memory import DynamicSwapInstaller
|
4 |
+
from .base_generator import BaseModelGenerator
|
5 |
+
|
6 |
+
class F1ModelGenerator(BaseModelGenerator):
|
7 |
+
"""
|
8 |
+
Model generator for the F1 HunyuanVideo model.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
"""
|
13 |
+
Initialize the F1 model generator.
|
14 |
+
"""
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self.model_name = "F1"
|
17 |
+
self.model_path = 'lllyasviel/FramePack_F1_I2V_HY_20250503'
|
18 |
+
|
19 |
+
def get_model_name(self):
|
20 |
+
"""
|
21 |
+
Get the name of the model.
|
22 |
+
"""
|
23 |
+
return self.model_name
|
24 |
+
|
25 |
+
def load_model(self):
|
26 |
+
"""
|
27 |
+
Load the F1 transformer model.
|
28 |
+
"""
|
29 |
+
print(f"Loading {self.model_name} Transformer...")
|
30 |
+
|
31 |
+
# Create the transformer model
|
32 |
+
self.transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
33 |
+
self.model_path,
|
34 |
+
torch_dtype=torch.bfloat16
|
35 |
+
).cpu()
|
36 |
+
|
37 |
+
# Configure the model
|
38 |
+
self.transformer.eval()
|
39 |
+
self.transformer.to(dtype=torch.bfloat16)
|
40 |
+
self.transformer.requires_grad_(False)
|
41 |
+
|
42 |
+
# Set up dynamic swap if not in high VRAM mode
|
43 |
+
if not self.high_vram:
|
44 |
+
DynamicSwapInstaller.install_model(self.transformer, device=self.gpu)
|
45 |
+
|
46 |
+
print(f"{self.model_name} Transformer Loaded.")
|
47 |
+
return self.transformer
|
48 |
+
|
49 |
+
def prepare_history_latents(self, height, width):
|
50 |
+
"""
|
51 |
+
Prepare the history latents tensor for the F1 model.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
height: The height of the image
|
55 |
+
width: The width of the image
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
The initialized history latents tensor
|
59 |
+
"""
|
60 |
+
return torch.zeros(
|
61 |
+
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
|
62 |
+
dtype=torch.float32
|
63 |
+
).cpu()
|
64 |
+
|
65 |
+
def initialize_with_start_latent(self, history_latents, start_latent):
|
66 |
+
"""
|
67 |
+
Initialize the history latents with the start latent for the F1 model.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
history_latents: The history latents
|
71 |
+
start_latent: The start latent
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
The initialized history latents
|
75 |
+
"""
|
76 |
+
# Add the start frame to history_latents
|
77 |
+
return torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
|
78 |
+
|
79 |
+
def get_latent_paddings(self, total_latent_sections):
|
80 |
+
"""
|
81 |
+
Get the latent paddings for the F1 model.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
total_latent_sections: The total number of latent sections
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
A list of latent paddings
|
88 |
+
"""
|
89 |
+
# F1 model uses a fixed approach with just 0 for last section and 1 for others
|
90 |
+
return [1] * (total_latent_sections - 1) + [0]
|
91 |
+
|
92 |
+
def prepare_indices(self, latent_padding_size, latent_window_size):
|
93 |
+
"""
|
94 |
+
Prepare the indices for the F1 model.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
latent_padding_size: The size of the latent padding
|
98 |
+
latent_window_size: The size of the latent window
|
99 |
+
|
100 |
+
Returns:
|
101 |
+
A tuple of (clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices)
|
102 |
+
"""
|
103 |
+
# F1 model uses a different indices approach
|
104 |
+
# latent_window_sizeが4.5の場合は特別に5を使用
|
105 |
+
effective_window_size = 5 if latent_window_size == 4.5 else int(latent_window_size)
|
106 |
+
indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
|
107 |
+
clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
|
108 |
+
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
|
109 |
+
|
110 |
+
return clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices
|
111 |
+
|
112 |
+
def prepare_clean_latents(self, start_latent, history_latents):
|
113 |
+
"""
|
114 |
+
Prepare the clean latents for the F1 model.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
start_latent: The start latent
|
118 |
+
history_latents: The history latents
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
A tuple of (clean_latents, clean_latents_2x, clean_latents_4x)
|
122 |
+
"""
|
123 |
+
# For F1, we take the last frames for clean latents
|
124 |
+
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
|
125 |
+
# For F1, we prepend the start latent to clean_latents_1x
|
126 |
+
clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
|
127 |
+
|
128 |
+
return clean_latents, clean_latents_2x, clean_latents_4x
|
129 |
+
|
130 |
+
def update_history_latents(self, history_latents, generated_latents):
|
131 |
+
"""
|
132 |
+
Update the history latents with the generated latents for the F1 model.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
history_latents: The history latents
|
136 |
+
generated_latents: The generated latents
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
The updated history latents
|
140 |
+
"""
|
141 |
+
# For F1, we append new frames to the end
|
142 |
+
return torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
|
143 |
+
|
144 |
+
def get_real_history_latents(self, history_latents, total_generated_latent_frames):
|
145 |
+
"""
|
146 |
+
Get the real history latents for the F1 model.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
history_latents: The history latents
|
150 |
+
total_generated_latent_frames: The total number of generated latent frames
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
The real history latents
|
154 |
+
"""
|
155 |
+
# For F1, we take frames from the end
|
156 |
+
return history_latents[:, :, -total_generated_latent_frames:, :, :]
|
157 |
+
|
158 |
+
def update_history_pixels(self, history_pixels, current_pixels, overlapped_frames):
|
159 |
+
"""
|
160 |
+
Update the history pixels with the current pixels for the F1 model.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
history_pixels: The history pixels
|
164 |
+
current_pixels: The current pixels
|
165 |
+
overlapped_frames: The number of overlapped frames
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
The updated history pixels
|
169 |
+
"""
|
170 |
+
from diffusers_helper.utils import soft_append_bcthw
|
171 |
+
# For F1 model, history_pixels is first, current_pixels is second
|
172 |
+
return soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
|
173 |
+
|
174 |
+
def get_section_latent_frames(self, latent_window_size, is_last_section):
|
175 |
+
"""
|
176 |
+
Get the number of section latent frames for the F1 model.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
latent_window_size: The size of the latent window
|
180 |
+
is_last_section: Whether this is the last section
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
The number of section latent frames
|
184 |
+
"""
|
185 |
+
return latent_window_size * 2
|
186 |
+
|
187 |
+
def get_current_pixels(self, real_history_latents, section_latent_frames, vae):
|
188 |
+
"""
|
189 |
+
Get the current pixels for the F1 model.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
real_history_latents: The real history latents
|
193 |
+
section_latent_frames: The number of section latent frames
|
194 |
+
vae: The VAE model
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
The current pixels
|
198 |
+
"""
|
199 |
+
from diffusers_helper.hunyuan import vae_decode
|
200 |
+
# For F1, we take frames from the end
|
201 |
+
return vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
|
202 |
+
|
203 |
+
def format_position_description(self, total_generated_latent_frames, current_pos, original_pos, current_prompt):
|
204 |
+
"""
|
205 |
+
Format the position description for the F1 model.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
total_generated_latent_frames: The total number of generated latent frames
|
209 |
+
current_pos: The current position in seconds
|
210 |
+
original_pos: The original position in seconds
|
211 |
+
current_prompt: The current prompt
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
The formatted position description
|
215 |
+
"""
|
216 |
+
return (f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, '
|
217 |
+
f'Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30):.2f} seconds (FPS-30). '
|
218 |
+
f'Current position: {current_pos:.2f}s. '
|
219 |
+
f'using prompt: {current_prompt[:256]}...')
|
modules/generators/original_generator.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
3 |
+
from diffusers_helper.memory import DynamicSwapInstaller
|
4 |
+
from .base_generator import BaseModelGenerator
|
5 |
+
|
6 |
+
class OriginalModelGenerator(BaseModelGenerator):
|
7 |
+
"""
|
8 |
+
Model generator for the Original HunyuanVideo model.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, **kwargs):
|
12 |
+
"""
|
13 |
+
Initialize the Original model generator.
|
14 |
+
"""
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self.model_name = "Original"
|
17 |
+
self.model_path = 'lllyasviel/FramePackI2V_HY'
|
18 |
+
|
19 |
+
def get_model_name(self):
|
20 |
+
"""
|
21 |
+
Get the name of the model.
|
22 |
+
"""
|
23 |
+
return self.model_name
|
24 |
+
|
25 |
+
def load_model(self):
|
26 |
+
"""
|
27 |
+
Load the Original transformer model.
|
28 |
+
"""
|
29 |
+
print(f"Loading {self.model_name} Transformer...")
|
30 |
+
|
31 |
+
# Create the transformer model
|
32 |
+
self.transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
33 |
+
self.model_path,
|
34 |
+
torch_dtype=torch.bfloat16
|
35 |
+
).cpu()
|
36 |
+
|
37 |
+
# Configure the model
|
38 |
+
self.transformer.eval()
|
39 |
+
self.transformer.to(dtype=torch.bfloat16)
|
40 |
+
self.transformer.requires_grad_(False)
|
41 |
+
|
42 |
+
# Set up dynamic swap if not in high VRAM mode
|
43 |
+
if not self.high_vram:
|
44 |
+
DynamicSwapInstaller.install_model(self.transformer, device=self.gpu)
|
45 |
+
|
46 |
+
print(f"{self.model_name} Transformer Loaded.")
|
47 |
+
return self.transformer
|
48 |
+
|
49 |
+
def prepare_history_latents(self, height, width):
|
50 |
+
"""
|
51 |
+
Prepare the history latents tensor for the Original model.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
height: The height of the image
|
55 |
+
width: The width of the image
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
The initialized history latents tensor
|
59 |
+
"""
|
60 |
+
return torch.zeros(
|
61 |
+
size=(1, 16, 1 + 2 + 16, height // 8, width // 8),
|
62 |
+
dtype=torch.float32
|
63 |
+
).cpu()
|
64 |
+
|
65 |
+
def get_latent_paddings(self, total_latent_sections):
|
66 |
+
"""
|
67 |
+
Get the latent paddings for the Original model.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
total_latent_sections: The total number of latent sections
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
A list of latent paddings
|
74 |
+
"""
|
75 |
+
# Original model uses reversed latent paddings
|
76 |
+
if total_latent_sections > 4:
|
77 |
+
return [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
78 |
+
else:
|
79 |
+
return list(reversed(range(total_latent_sections)))
|
80 |
+
|
81 |
+
def prepare_indices(self, latent_padding_size, latent_window_size):
|
82 |
+
"""
|
83 |
+
Prepare the indices for the Original model.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
latent_padding_size: The size of the latent padding
|
87 |
+
latent_window_size: The size of the latent window
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
A tuple of (clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices)
|
91 |
+
"""
|
92 |
+
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
|
93 |
+
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
94 |
+
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
95 |
+
|
96 |
+
return clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices
|
97 |
+
|
98 |
+
def prepare_clean_latents(self, start_latent, history_latents):
|
99 |
+
"""
|
100 |
+
Prepare the clean latents for the Original model.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
start_latent: The start latent
|
104 |
+
history_latents: The history latents
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
A tuple of (clean_latents, clean_latents_2x, clean_latents_4x)
|
108 |
+
"""
|
109 |
+
clean_latents_pre = start_latent.to(history_latents)
|
110 |
+
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
111 |
+
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
112 |
+
|
113 |
+
return clean_latents, clean_latents_2x, clean_latents_4x
|
114 |
+
|
115 |
+
def update_history_latents(self, history_latents, generated_latents):
|
116 |
+
"""
|
117 |
+
Update the history latents with the generated latents for the Original model.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
history_latents: The history latents
|
121 |
+
generated_latents: The generated latents
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
The updated history latents
|
125 |
+
"""
|
126 |
+
# For Original model, we prepend the generated latents
|
127 |
+
return torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
128 |
+
|
129 |
+
def get_real_history_latents(self, history_latents, total_generated_latent_frames):
|
130 |
+
"""
|
131 |
+
Get the real history latents for the Original model.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
history_latents: The history latents
|
135 |
+
total_generated_latent_frames: The total number of generated latent frames
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
The real history latents
|
139 |
+
"""
|
140 |
+
return history_latents[:, :, :total_generated_latent_frames, :, :]
|
141 |
+
|
142 |
+
def update_history_pixels(self, history_pixels, current_pixels, overlapped_frames):
|
143 |
+
"""
|
144 |
+
Update the history pixels with the current pixels for the Original model.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
history_pixels: The history pixels
|
148 |
+
current_pixels: The current pixels
|
149 |
+
overlapped_frames: The number of overlapped frames
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
The updated history pixels
|
153 |
+
"""
|
154 |
+
from diffusers_helper.utils import soft_append_bcthw
|
155 |
+
# For Original model, current_pixels is first, history_pixels is second
|
156 |
+
return soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
157 |
+
|
158 |
+
def get_section_latent_frames(self, latent_window_size, is_last_section):
|
159 |
+
"""
|
160 |
+
Get the number of section latent frames for the Original model.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
latent_window_size: The size of the latent window
|
164 |
+
is_last_section: Whether this is the last section
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
The number of section latent frames
|
168 |
+
"""
|
169 |
+
return latent_window_size * 2
|
170 |
+
|
171 |
+
def get_current_pixels(self, real_history_latents, section_latent_frames, vae):
|
172 |
+
"""
|
173 |
+
Get the current pixels for the Original model.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
real_history_latents: The real history latents
|
177 |
+
section_latent_frames: The number of section latent frames
|
178 |
+
vae: The VAE model
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
The current pixels
|
182 |
+
"""
|
183 |
+
from diffusers_helper.hunyuan import vae_decode
|
184 |
+
return vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
185 |
+
|
186 |
+
def format_position_description(self, total_generated_latent_frames, current_pos, original_pos, current_prompt):
|
187 |
+
"""
|
188 |
+
Format the position description for the Original model.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
total_generated_latent_frames: The total number of generated latent frames
|
192 |
+
current_pos: The current position in seconds
|
193 |
+
original_pos: The original position in seconds
|
194 |
+
current_prompt: The current prompt
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
The formatted position description
|
198 |
+
"""
|
199 |
+
return (f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, '
|
200 |
+
f'Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30):.2f} seconds (FPS-30). '
|
201 |
+
f'Current position: {current_pos:.2f}s (original: {original_pos:.2f}s). '
|
202 |
+
f'using prompt: {current_prompt[:256]}...')
|
modules/interface.py
ADDED
@@ -0,0 +1,771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
import datetime
|
4 |
+
import random
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
from typing import List, Dict, Any, Optional
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
import base64
|
12 |
+
import io
|
13 |
+
|
14 |
+
from modules.video_queue import JobStatus, Job
|
15 |
+
from modules.prompt_handler import get_section_boundaries, get_quick_prompts, parse_timestamped_prompt
|
16 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
17 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
18 |
+
|
19 |
+
def create_interface(
|
20 |
+
process_fn,
|
21 |
+
monitor_fn,
|
22 |
+
end_process_fn,
|
23 |
+
update_queue_status_fn,
|
24 |
+
load_lora_file_fn,
|
25 |
+
job_queue,
|
26 |
+
settings,
|
27 |
+
default_prompt: str = '[1s: The person waves hello] [3s: The person jumps up and down] [5s: The person does a dance]',
|
28 |
+
lora_names: list = [],
|
29 |
+
lora_values: list = []
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
Create the Gradio interface for the video generation application
|
33 |
+
|
34 |
+
Args:
|
35 |
+
process_fn: Function to process a new job
|
36 |
+
monitor_fn: Function to monitor an existing job
|
37 |
+
end_process_fn: Function to cancel the current job
|
38 |
+
update_queue_status_fn: Function to update the queue status display
|
39 |
+
default_prompt: Default prompt text
|
40 |
+
lora_names: List of loaded LoRA names
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
Gradio Blocks interface
|
44 |
+
"""
|
45 |
+
# Get section boundaries and quick prompts
|
46 |
+
section_boundaries = get_section_boundaries()
|
47 |
+
quick_prompts = get_quick_prompts()
|
48 |
+
|
49 |
+
# Create the interface
|
50 |
+
css = make_progress_bar_css()
|
51 |
+
css += """
|
52 |
+
/* Image container styling - more aggressive approach */
|
53 |
+
.contain-image, .contain-image > div, .contain-image > div > img {
|
54 |
+
object-fit: contain !important;
|
55 |
+
}
|
56 |
+
|
57 |
+
/* Target all images in the contain-image class and its children */
|
58 |
+
.contain-image img,
|
59 |
+
.contain-image > div > img,
|
60 |
+
.contain-image * img {
|
61 |
+
object-fit: contain !important;
|
62 |
+
width: 100% !important;
|
63 |
+
height: 100% !important;
|
64 |
+
max-height: 100% !important;
|
65 |
+
max-width: 100% !important;
|
66 |
+
}
|
67 |
+
|
68 |
+
/* Additional selectors to override Gradio defaults */
|
69 |
+
.gradio-container img,
|
70 |
+
.gradio-container .svelte-1b5oq5x,
|
71 |
+
.gradio-container [data-testid="image"] img {
|
72 |
+
object-fit: contain !important;
|
73 |
+
}
|
74 |
+
|
75 |
+
/* Toolbar styling */
|
76 |
+
#fixed-toolbar {
|
77 |
+
position: fixed;
|
78 |
+
top: 0;
|
79 |
+
left: 0;
|
80 |
+
width: 100vw;
|
81 |
+
z-index: 1000;
|
82 |
+
background: rgb(11, 15, 25);
|
83 |
+
color: #fff;
|
84 |
+
padding: 10px 20px;
|
85 |
+
display: flex;
|
86 |
+
align-items: center;
|
87 |
+
gap: 16px;
|
88 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
89 |
+
border-bottom: 1px solid #4f46e5;
|
90 |
+
}
|
91 |
+
|
92 |
+
/* Button styling */
|
93 |
+
#toolbar-add-to-queue-btn button {
|
94 |
+
font-size: 14px !important;
|
95 |
+
padding: 4px 16px !important;
|
96 |
+
height: 32px !important;
|
97 |
+
min-width: 80px !important;
|
98 |
+
}
|
99 |
+
.narrow-button {
|
100 |
+
min-width: 40px !important;
|
101 |
+
width: 40px !important;
|
102 |
+
padding: 0 !important;
|
103 |
+
margin: 0 !important;
|
104 |
+
}
|
105 |
+
.gr-button-primary {
|
106 |
+
color: white;
|
107 |
+
}
|
108 |
+
|
109 |
+
/* Layout adjustments */
|
110 |
+
body, .gradio-container {
|
111 |
+
padding-top: 40px !important;
|
112 |
+
}
|
113 |
+
"""
|
114 |
+
|
115 |
+
# Get the theme from settings
|
116 |
+
current_theme = settings.get("gradio_theme", "default") # Use default if not found
|
117 |
+
block = gr.Blocks(css=css, title="FramePack Studio", theme=current_theme).queue()
|
118 |
+
|
119 |
+
with block:
|
120 |
+
|
121 |
+
with gr.Row(elem_id="fixed-toolbar"):
|
122 |
+
gr.Markdown("<h1 style='margin:0;color:white;'>FramePack Studio</h1>")
|
123 |
+
# with gr.Column(scale=1):
|
124 |
+
# queue_stats_display = gr.Markdown("<p style='margin:0;color:white;'>Queue: 0 | Completed: 0</p>")
|
125 |
+
with gr.Column(scale=0):
|
126 |
+
refresh_stats_btn = gr.Button("⟳", elem_id="refresh-stats-btn")
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
with gr.Tabs():
|
132 |
+
with gr.Tab("Generate", id="generate_tab"):
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column(scale=2):
|
135 |
+
model_type = gr.Radio(
|
136 |
+
choices=["Original", "F1"],
|
137 |
+
value="Original",
|
138 |
+
label="Model",
|
139 |
+
info="Select which model to use for generation"
|
140 |
+
)
|
141 |
+
input_image = gr.Image(
|
142 |
+
sources='upload',
|
143 |
+
type="numpy",
|
144 |
+
label="Image (optional)",
|
145 |
+
height=420,
|
146 |
+
elem_classes="contain-image",
|
147 |
+
image_mode="RGB",
|
148 |
+
show_download_button=False,
|
149 |
+
show_label=True,
|
150 |
+
container=True
|
151 |
+
)
|
152 |
+
|
153 |
+
with gr.Accordion("Latent Image Options", open=False):
|
154 |
+
latent_type = gr.Dropdown(
|
155 |
+
["Black", "White", "Noise", "Green Screen"], label="Latent Image", value="Black", info="Used as a starting point if no image is provided"
|
156 |
+
)
|
157 |
+
|
158 |
+
prompt = gr.Textbox(label="Prompt", value=default_prompt)
|
159 |
+
|
160 |
+
with gr.Accordion("Prompt Parameters", open=False):
|
161 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True) # Make visible for both models
|
162 |
+
|
163 |
+
blend_sections = gr.Slider(
|
164 |
+
minimum=0, maximum=10, value=4, step=1,
|
165 |
+
label="Number of sections to blend between prompts"
|
166 |
+
)
|
167 |
+
with gr.Accordion("Generation Parameters", open=True):
|
168 |
+
with gr.Row():
|
169 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
|
170 |
+
total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=1, maximum=120, value=6, step=0.1)
|
171 |
+
with gr.Group():
|
172 |
+
with gr.Row("Resolution"):
|
173 |
+
resolutionW = gr.Slider(
|
174 |
+
label="Width", minimum=128, maximum=768, value=640, step=32,
|
175 |
+
info="Nearest valid width will be used."
|
176 |
+
)
|
177 |
+
resolutionH = gr.Slider(
|
178 |
+
label="Height", minimum=128, maximum=768, value=640, step=32,
|
179 |
+
info="Nearest valid height will be used."
|
180 |
+
)
|
181 |
+
resolution_text = gr.Markdown(value="<div style='text-align:right; padding:5px 15px 5px 5px;'>Selected bucket for resolution: 640 x 640</div>", label="", show_label=False)
|
182 |
+
def on_input_image_change(img):
|
183 |
+
if img is not None:
|
184 |
+
return gr.update(info="Nearest valid bucket size will be used. Height will be adjusted automatically."), gr.update(visible=False)
|
185 |
+
else:
|
186 |
+
return gr.update(info="Nearest valid width will be used."), gr.update(visible=True)
|
187 |
+
input_image.change(fn=on_input_image_change, inputs=[input_image], outputs=[resolutionW, resolutionH])
|
188 |
+
def on_resolution_change(img, resolutionW, resolutionH):
|
189 |
+
out_bucket_resH, out_bucket_resW = [640, 640]
|
190 |
+
if img is not None:
|
191 |
+
H, W, _ = img.shape
|
192 |
+
out_bucket_resH, out_bucket_resW = find_nearest_bucket(H, W, resolution=resolutionW)
|
193 |
+
else:
|
194 |
+
out_bucket_resH, out_bucket_resW = find_nearest_bucket(resolutionH, resolutionW, (resolutionW+resolutionH)/2) # if resolutionW > resolutionH else resolutionH
|
195 |
+
return gr.update(value=f"<div style='text-align:right; padding:5px 15px 5px 5px;'>Selected bucket for resolution: {out_bucket_resW} x {out_bucket_resH}</div>")
|
196 |
+
resolutionW.change(fn=on_resolution_change, inputs=[input_image, resolutionW, resolutionH], outputs=[resolution_text], show_progress="hidden")
|
197 |
+
resolutionH.change(fn=on_resolution_change, inputs=[input_image, resolutionW, resolutionH], outputs=[resolution_text], show_progress="hidden")
|
198 |
+
with gr.Row("LoRAs"):
|
199 |
+
lora_selector = gr.Dropdown(
|
200 |
+
choices=lora_names,
|
201 |
+
label="Select LoRAs to Load",
|
202 |
+
multiselect=True,
|
203 |
+
value=[],
|
204 |
+
info="Select one or more LoRAs to use for this job"
|
205 |
+
)
|
206 |
+
lora_names_states = gr.State(lora_names)
|
207 |
+
lora_sliders = {}
|
208 |
+
for lora in lora_names:
|
209 |
+
lora_sliders[lora] = gr.Slider(
|
210 |
+
minimum=0.0, maximum=2.0, value=1.0, step=0.01,
|
211 |
+
label=f"{lora} Weight", visible=False, interactive=True
|
212 |
+
)
|
213 |
+
|
214 |
+
with gr.Row("Metadata"):
|
215 |
+
json_upload = gr.File(
|
216 |
+
label="Upload Metadata JSON (optional)",
|
217 |
+
file_types=[".json"],
|
218 |
+
type="filepath",
|
219 |
+
height=100,
|
220 |
+
)
|
221 |
+
with gr.Row("TeaCache"):
|
222 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
226 |
+
randomize_seed = gr.Checkbox(label="Randomize", value=False, info="Generate a new random seed for each job")
|
227 |
+
|
228 |
+
with gr.Accordion("Advanced Parameters", open=False):
|
229 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=True, info='Change at your own risk, very experimental') # Should not change
|
230 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
231 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01)
|
232 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
233 |
+
|
234 |
+
with gr.Column():
|
235 |
+
preview_image = gr.Image(
|
236 |
+
label="Next Latents",
|
237 |
+
height=150,
|
238 |
+
visible=True,
|
239 |
+
type="numpy",
|
240 |
+
interactive=False,
|
241 |
+
elem_classes="contain-image",
|
242 |
+
image_mode="RGB"
|
243 |
+
)
|
244 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=256, loop=True)
|
245 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
246 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
247 |
+
|
248 |
+
with gr.Row():
|
249 |
+
current_job_id = gr.Textbox(label="Current Job ID", visible=True, interactive=True)
|
250 |
+
end_button = gr.Button(value="Cancel Current Job", interactive=True)
|
251 |
+
start_button = gr.Button(value="Add to Queue", elem_id="toolbar-add-to-queue-btn")
|
252 |
+
|
253 |
+
with gr.Tab("Queue"):
|
254 |
+
with gr.Row():
|
255 |
+
with gr.Column():
|
256 |
+
# Create a container for the queue status
|
257 |
+
with gr.Row():
|
258 |
+
queue_status = gr.DataFrame(
|
259 |
+
headers=["Job ID", "Type", "Status", "Created", "Started", "Completed", "Elapsed"], # Removed Preview header
|
260 |
+
datatype=["str", "str", "str", "str", "str", "str", "str"], # Removed image datatype
|
261 |
+
label="Job Queue"
|
262 |
+
)
|
263 |
+
with gr.Row():
|
264 |
+
refresh_button = gr.Button("Refresh Queue")
|
265 |
+
# Connect the refresh button (Moved inside 'with block')
|
266 |
+
refresh_button.click(
|
267 |
+
fn=update_queue_status_fn, # Use the function passed in
|
268 |
+
inputs=[],
|
269 |
+
outputs=[queue_status]
|
270 |
+
)
|
271 |
+
# Create a container for thumbnails (kept for potential future use, though not displayed in DataFrame)
|
272 |
+
with gr.Row():
|
273 |
+
thumbnail_container = gr.Column()
|
274 |
+
thumbnail_container.elem_classes = ["thumbnail-container"]
|
275 |
+
|
276 |
+
# Add CSS for thumbnails
|
277 |
+
with gr.TabItem("Outputs"):
|
278 |
+
outputDirectory_video = settings.get("output_dir", settings.default_settings['output_dir'])
|
279 |
+
outputDirectory_metadata = settings.get("metadata_dir", settings.default_settings['metadata_dir'])
|
280 |
+
def get_gallery_items():
|
281 |
+
items = []
|
282 |
+
for f in os.listdir(outputDirectory_metadata):
|
283 |
+
if f.endswith(".png"):
|
284 |
+
prefix = os.path.splitext(f)[0]
|
285 |
+
latest_video = get_latest_video_version(prefix)
|
286 |
+
if latest_video:
|
287 |
+
video_path = os.path.join(outputDirectory_video, latest_video)
|
288 |
+
mtime = os.path.getmtime(video_path)
|
289 |
+
preview_path = os.path.join(outputDirectory_metadata, f)
|
290 |
+
items.append((preview_path, prefix, mtime))
|
291 |
+
items.sort(key=lambda x: x[2], reverse=True)
|
292 |
+
return [(i[0], i[1]) for i in items]
|
293 |
+
def get_latest_video_version(prefix):
|
294 |
+
max_number = -1
|
295 |
+
selected_file = None
|
296 |
+
for f in os.listdir(outputDirectory_video):
|
297 |
+
if f.startswith(prefix + "_") and f.endswith(".mp4"):
|
298 |
+
num = int(f.replace(prefix + "_", '').replace(".mp4", ''))
|
299 |
+
if num > max_number:
|
300 |
+
max_number = num
|
301 |
+
selected_file = f
|
302 |
+
return selected_file
|
303 |
+
def load_video_and_info_from_prefix(prefix):
|
304 |
+
video_file = get_latest_video_version(prefix)
|
305 |
+
if not video_file:
|
306 |
+
return None, "JSON not found."
|
307 |
+
video_path = os.path.join(outputDirectory_video, video_file)
|
308 |
+
json_path = os.path.join(outputDirectory_metadata, prefix) + ".json"
|
309 |
+
info = {"description": "no info"}
|
310 |
+
if os.path.exists(json_path):
|
311 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
312 |
+
info = json.load(f)
|
313 |
+
return video_path, json.dumps(info, indent=2, ensure_ascii=False)
|
314 |
+
gallery_items_state = gr.State(get_gallery_items())
|
315 |
+
with gr.Row():
|
316 |
+
with gr.Column(scale=2):
|
317 |
+
thumbs = gr.Gallery(
|
318 |
+
# value=[i[0] for i in get_gallery_items()],
|
319 |
+
columns=[4],
|
320 |
+
allow_preview=False,
|
321 |
+
object_fit="cover",
|
322 |
+
height="auto"
|
323 |
+
)
|
324 |
+
refresh_button = gr.Button("Update")
|
325 |
+
with gr.Column(scale=5):
|
326 |
+
video_out = gr.Video(sources=[], autoplay=True, loop=True, visible=False)
|
327 |
+
with gr.Column(scale=1):
|
328 |
+
info_out = gr.Textbox(label="Generation info", visible=False)
|
329 |
+
def refresh_gallery():
|
330 |
+
new_items = get_gallery_items()
|
331 |
+
return gr.update(value=[i[0] for i in new_items]), new_items
|
332 |
+
refresh_button.click(fn=refresh_gallery, outputs=[thumbs, gallery_items_state])
|
333 |
+
def on_select(evt: gr.SelectData, gallery_items):
|
334 |
+
prefix = gallery_items[evt.index][1]
|
335 |
+
video, info = load_video_and_info_from_prefix(prefix)
|
336 |
+
return gr.update(value=video, visible=True), gr.update(value=info, visible=True)
|
337 |
+
thumbs.select(fn=on_select, inputs=[gallery_items_state], outputs=[video_out, info_out])
|
338 |
+
with gr.Tab("Settings"):
|
339 |
+
with gr.Row():
|
340 |
+
with gr.Column():
|
341 |
+
save_metadata = gr.Checkbox(
|
342 |
+
label="Save Metadata",
|
343 |
+
info="Save to JSON file",
|
344 |
+
value=settings.get("save_metadata", 6),
|
345 |
+
)
|
346 |
+
gpu_memory_preservation = gr.Slider(
|
347 |
+
label="GPU Inference Preserved Memory (GB) (larger means slower)",
|
348 |
+
minimum=1,
|
349 |
+
maximum=128,
|
350 |
+
step=0.1,
|
351 |
+
value=settings.get("gpu_memory_preservation", 6),
|
352 |
+
info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed."
|
353 |
+
)
|
354 |
+
mp4_crf = gr.Slider(
|
355 |
+
label="MP4 Compression",
|
356 |
+
minimum=0,
|
357 |
+
maximum=100,
|
358 |
+
step=1,
|
359 |
+
value=settings.get("mp4_crf", 16),
|
360 |
+
info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs."
|
361 |
+
)
|
362 |
+
clean_up_videos = gr.Checkbox(
|
363 |
+
label="Clean up video files",
|
364 |
+
value=settings.get("clean_up_videos", True),
|
365 |
+
info="If checked, only the final video will be kept after generation."
|
366 |
+
)
|
367 |
+
output_dir = gr.Textbox(
|
368 |
+
label="Output Directory",
|
369 |
+
value=settings.get("output_dir"),
|
370 |
+
placeholder="Path to save generated videos"
|
371 |
+
)
|
372 |
+
metadata_dir = gr.Textbox(
|
373 |
+
label="Metadata Directory",
|
374 |
+
value=settings.get("metadata_dir"),
|
375 |
+
placeholder="Path to save metadata files"
|
376 |
+
)
|
377 |
+
lora_dir = gr.Textbox(
|
378 |
+
label="LoRA Directory",
|
379 |
+
value=settings.get("lora_dir"),
|
380 |
+
placeholder="Path to LoRA models"
|
381 |
+
)
|
382 |
+
gradio_temp_dir = gr.Textbox(label="Gradio Temporary Directory", value=settings.get("gradio_temp_dir"))
|
383 |
+
auto_save = gr.Checkbox(
|
384 |
+
label="Auto-save settings",
|
385 |
+
value=settings.get("auto_save_settings", True)
|
386 |
+
)
|
387 |
+
# Add Gradio Theme Dropdown
|
388 |
+
gradio_themes = ["default", "base", "soft", "glass", "mono", "huggingface"]
|
389 |
+
theme_dropdown = gr.Dropdown(
|
390 |
+
label="Theme",
|
391 |
+
choices=gradio_themes,
|
392 |
+
value=settings.get("gradio_theme", "soft"),
|
393 |
+
info="Select the Gradio UI theme. Requires restart."
|
394 |
+
)
|
395 |
+
save_btn = gr.Button("Save Settings")
|
396 |
+
cleanup_btn = gr.Button("Clean Up Temporary Files")
|
397 |
+
status = gr.HTML("")
|
398 |
+
cleanup_output = gr.Textbox(label="Cleanup Status", interactive=False)
|
399 |
+
|
400 |
+
def save_settings(save_metadata, gpu_memory_preservation, mp4_crf, clean_up_videos, output_dir, metadata_dir, lora_dir, gradio_temp_dir, auto_save, selected_theme):
|
401 |
+
try:
|
402 |
+
settings.save_settings(
|
403 |
+
save_metadata=save_metadata,
|
404 |
+
gpu_memory_preservation=gpu_memory_preservation,
|
405 |
+
mp4_crf=mp4_crf,
|
406 |
+
clean_up_videos=clean_up_videos,
|
407 |
+
output_dir=output_dir,
|
408 |
+
metadata_dir=metadata_dir,
|
409 |
+
lora_dir=lora_dir,
|
410 |
+
gradio_temp_dir=gradio_temp_dir,
|
411 |
+
auto_save_settings=auto_save,
|
412 |
+
gradio_theme=selected_theme
|
413 |
+
)
|
414 |
+
return "<p style='color:green;'>Settings saved successfully! Restart required for theme change.</p>"
|
415 |
+
except Exception as e:
|
416 |
+
return f"<p style='color:red;'>Error saving settings: {str(e)}</p>"
|
417 |
+
|
418 |
+
save_btn.click(
|
419 |
+
fn=save_settings,
|
420 |
+
inputs=[save_metadata, gpu_memory_preservation, mp4_crf, clean_up_videos, output_dir, metadata_dir, lora_dir, gradio_temp_dir, auto_save, theme_dropdown],
|
421 |
+
outputs=[status]
|
422 |
+
)
|
423 |
+
|
424 |
+
def cleanup_temp_files():
|
425 |
+
"""Clean up temporary files and folders in the Gradio temp directory"""
|
426 |
+
temp_dir = settings.get("gradio_temp_dir")
|
427 |
+
if not temp_dir or not os.path.exists(temp_dir):
|
428 |
+
return "No temporary directory found or directory does not exist."
|
429 |
+
|
430 |
+
try:
|
431 |
+
# Get all items in the temp directory
|
432 |
+
items = os.listdir(temp_dir)
|
433 |
+
removed_count = 0
|
434 |
+
print(f"Finding items in {temp_dir}")
|
435 |
+
for item in items:
|
436 |
+
item_path = os.path.join(temp_dir, item)
|
437 |
+
try:
|
438 |
+
if os.path.isfile(item_path) or os.path.islink(item_path):
|
439 |
+
print(f"Removing {item_path}")
|
440 |
+
os.remove(item_path)
|
441 |
+
removed_count += 1
|
442 |
+
elif os.path.isdir(item_path):
|
443 |
+
print(f"Removing directory {item_path}")
|
444 |
+
shutil.rmtree(item_path)
|
445 |
+
removed_count += 1
|
446 |
+
except Exception as e:
|
447 |
+
print(f"Error removing {item_path}: {e}")
|
448 |
+
|
449 |
+
return f"Cleaned up {removed_count} temporary files/folders."
|
450 |
+
except Exception as e:
|
451 |
+
return f"Error cleaning up temporary files: {str(e)}"
|
452 |
+
|
453 |
+
# --- Event Handlers and Connections (Now correctly indented) ---
|
454 |
+
|
455 |
+
# Connect the main process function (wrapper for adding to queue)
|
456 |
+
def process_with_queue_update(model_type, *args):
|
457 |
+
# Extract all arguments (ensure order matches inputs lists)
|
458 |
+
input_image, prompt_text, n_prompt, seed_value, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, randomize_seed_checked, save_metadata_checked, blend_sections, latent_type, clean_up_videos, selected_loras, resolutionW, resolutionH, *lora_args = args
|
459 |
+
|
460 |
+
# DO NOT parse the prompt here. Parsing happens once in the worker.
|
461 |
+
|
462 |
+
# Use the current seed value as is for this job
|
463 |
+
# Call the process function with all arguments
|
464 |
+
# Pass the model_type and the ORIGINAL prompt_text string to the backend process function
|
465 |
+
result = process_fn(model_type, input_image, prompt_text, n_prompt, seed_value, total_second_length, # Pass original prompt_text string
|
466 |
+
latent_window_size, steps, cfg, gs, rs,
|
467 |
+
use_teacache, blend_sections, latent_type, clean_up_videos, selected_loras, resolutionW, resolutionH, *lora_args)
|
468 |
+
|
469 |
+
# If randomize_seed is checked, generate a new random seed for the next job
|
470 |
+
new_seed_value = None
|
471 |
+
if randomize_seed_checked:
|
472 |
+
new_seed_value = random.randint(0, 21474)
|
473 |
+
print(f"Generated new seed for next job: {new_seed_value}")
|
474 |
+
|
475 |
+
# If a job ID was created, automatically start monitoring it and update queue
|
476 |
+
if result and result[1]: # Check if job_id exists in results
|
477 |
+
job_id = result[1]
|
478 |
+
queue_status_data = update_queue_status_fn()
|
479 |
+
|
480 |
+
# Add the new seed value to the results if randomize is checked
|
481 |
+
if new_seed_value is not None:
|
482 |
+
return [result[0], job_id, result[2], result[3], result[4], result[5], result[6], queue_status_data, new_seed_value]
|
483 |
+
else:
|
484 |
+
return [result[0], job_id, result[2], result[3], result[4], result[5], result[6], queue_status_data, gr.update()]
|
485 |
+
|
486 |
+
# If no job ID was created, still return the new seed if randomize is checked
|
487 |
+
if new_seed_value is not None:
|
488 |
+
return result + [update_queue_status_fn(), new_seed_value]
|
489 |
+
else:
|
490 |
+
return result + [update_queue_status_fn(), gr.update()]
|
491 |
+
|
492 |
+
# Custom end process function that ensures the queue is updated
|
493 |
+
def end_process_with_update():
|
494 |
+
queue_status_data = end_process_fn()
|
495 |
+
# Make sure to return the queue status data
|
496 |
+
return queue_status_data
|
497 |
+
|
498 |
+
# --- Inputs Lists ---
|
499 |
+
# --- Inputs for Original Model ---
|
500 |
+
ips = [
|
501 |
+
input_image,
|
502 |
+
prompt,
|
503 |
+
n_prompt,
|
504 |
+
seed,
|
505 |
+
total_second_length,
|
506 |
+
latent_window_size,
|
507 |
+
steps,
|
508 |
+
cfg,
|
509 |
+
gs,
|
510 |
+
rs,
|
511 |
+
gpu_memory_preservation,
|
512 |
+
use_teacache,
|
513 |
+
mp4_crf,
|
514 |
+
randomize_seed,
|
515 |
+
save_metadata,
|
516 |
+
blend_sections,
|
517 |
+
latent_type,
|
518 |
+
clean_up_videos,
|
519 |
+
lora_selector,
|
520 |
+
resolutionW,
|
521 |
+
resolutionH,
|
522 |
+
lora_names_states
|
523 |
+
]
|
524 |
+
# Add LoRA sliders to the input list
|
525 |
+
ips.extend([lora_sliders[lora] for lora in lora_names])
|
526 |
+
|
527 |
+
|
528 |
+
# --- Connect Buttons ---
|
529 |
+
start_button.click(
|
530 |
+
# Pass the selected model type from the radio buttons
|
531 |
+
fn=lambda selected_model, *args: process_with_queue_update(selected_model, *args),
|
532 |
+
inputs=[model_type] + ips,
|
533 |
+
outputs=[result_video, current_job_id, preview_image, progress_desc, progress_bar, start_button, end_button, queue_status, seed]
|
534 |
+
)
|
535 |
+
|
536 |
+
# Connect the end button to cancel the current job and update the queue
|
537 |
+
end_button.click(
|
538 |
+
fn=end_process_with_update,
|
539 |
+
outputs=[queue_status]
|
540 |
+
)
|
541 |
+
|
542 |
+
# --- Connect Monitoring ---
|
543 |
+
# Auto-monitor the current job when job_id changes
|
544 |
+
# Monitor original tab
|
545 |
+
current_job_id.change(
|
546 |
+
fn=monitor_fn,
|
547 |
+
inputs=[current_job_id],
|
548 |
+
outputs=[result_video, current_job_id, preview_image, progress_desc, progress_bar, start_button, end_button]
|
549 |
+
)
|
550 |
+
|
551 |
+
cleanup_btn.click(
|
552 |
+
fn=cleanup_temp_files,
|
553 |
+
outputs=[cleanup_output]
|
554 |
+
)
|
555 |
+
|
556 |
+
|
557 |
+
# --- Connect Queue Refresh ---
|
558 |
+
refresh_stats_btn.click(
|
559 |
+
fn=lambda: update_queue_status_fn(), # Use update_queue_status_fn passed in
|
560 |
+
inputs=None,
|
561 |
+
outputs=[queue_status] # Removed queue_stats_display from outputs
|
562 |
+
)
|
563 |
+
|
564 |
+
# Set up auto-refresh for queue status (using a timer)
|
565 |
+
refresh_timer = gr.Number(value=0, visible=False)
|
566 |
+
def refresh_timer_fn():
|
567 |
+
"""Updates the timer value periodically to trigger queue refresh"""
|
568 |
+
return int(time.time())
|
569 |
+
# This timer seems unused, maybe intended for block.load()? Keeping definition for now.
|
570 |
+
# refresh_timer.change(
|
571 |
+
# fn=update_queue_status_fn, # Use the function passed in
|
572 |
+
# outputs=[queue_status] # Update shared queue status display
|
573 |
+
# )
|
574 |
+
|
575 |
+
# --- Connect LoRA UI ---
|
576 |
+
# Function to update slider visibility based on selection
|
577 |
+
def update_lora_sliders(selected_loras):
|
578 |
+
updates = []
|
579 |
+
# Need to handle potential missing keys if lora_names changes dynamically
|
580 |
+
# For now, assume lora_names passed to create_interface is static
|
581 |
+
for lora in lora_names:
|
582 |
+
updates.append(gr.update(visible=(lora in selected_loras)))
|
583 |
+
# Ensure the output list matches the number of sliders defined
|
584 |
+
num_sliders = len(lora_sliders)
|
585 |
+
return updates[:num_sliders] # Return only updates for existing sliders
|
586 |
+
|
587 |
+
# Connect the dropdown to the sliders
|
588 |
+
lora_selector.change(
|
589 |
+
fn=update_lora_sliders,
|
590 |
+
inputs=[lora_selector],
|
591 |
+
outputs=[lora_sliders[lora] for lora in lora_names] # Assumes lora_sliders keys match lora_names
|
592 |
+
)
|
593 |
+
|
594 |
+
|
595 |
+
# --- Connect Metadata Loading ---
|
596 |
+
# Function to load metadata from JSON file
|
597 |
+
def load_metadata_from_json(json_path):
|
598 |
+
if not json_path:
|
599 |
+
# Return updates for all potentially affected components
|
600 |
+
num_orig_sliders = len(lora_sliders)
|
601 |
+
return [gr.update()] * (2 + num_orig_sliders)
|
602 |
+
|
603 |
+
try:
|
604 |
+
with open(json_path, 'r') as f:
|
605 |
+
metadata = json.load(f)
|
606 |
+
|
607 |
+
prompt_val = metadata.get('prompt')
|
608 |
+
seed_val = metadata.get('seed')
|
609 |
+
|
610 |
+
# Check for LoRA values in metadata
|
611 |
+
lora_weights = metadata.get('loras', {}) # Changed key to 'loras' based on studio.py worker
|
612 |
+
|
613 |
+
print(f"Loaded metadata from JSON: {json_path}")
|
614 |
+
print(f"Prompt: {prompt_val}, Seed: {seed_val}")
|
615 |
+
|
616 |
+
# Update the UI components
|
617 |
+
updates = [
|
618 |
+
gr.update(value=prompt_val) if prompt_val else gr.update(),
|
619 |
+
gr.update(value=seed_val) if seed_val is not None else gr.update()
|
620 |
+
]
|
621 |
+
|
622 |
+
# Update LoRA sliders if they exist in metadata
|
623 |
+
for lora in lora_names:
|
624 |
+
if lora in lora_weights:
|
625 |
+
updates.append(gr.update(value=lora_weights[lora]))
|
626 |
+
else:
|
627 |
+
updates.append(gr.update()) # No change if LoRA not in metadata
|
628 |
+
|
629 |
+
# Ensure the number of updates matches the number of outputs
|
630 |
+
num_orig_sliders = len(lora_sliders)
|
631 |
+
return updates[:2 + num_orig_sliders] # Return updates for prompt, seed, and sliders
|
632 |
+
|
633 |
+
except Exception as e:
|
634 |
+
print(f"Error loading metadata: {e}")
|
635 |
+
num_orig_sliders = len(lora_sliders)
|
636 |
+
return [gr.update()] * (2 + num_orig_sliders)
|
637 |
+
|
638 |
+
|
639 |
+
# Connect JSON metadata loader for Original tab
|
640 |
+
json_upload.change(
|
641 |
+
fn=load_metadata_from_json,
|
642 |
+
inputs=[json_upload],
|
643 |
+
outputs=[prompt, seed] + [lora_sliders[lora] for lora in lora_names]
|
644 |
+
)
|
645 |
+
|
646 |
+
|
647 |
+
# --- Helper Functions (defined within create_interface scope if needed by handlers) ---
|
648 |
+
# Function to get queue statistics
|
649 |
+
def get_queue_stats():
|
650 |
+
try:
|
651 |
+
# Get all jobs from the queue
|
652 |
+
jobs = job_queue.get_all_jobs()
|
653 |
+
|
654 |
+
# Count jobs by status
|
655 |
+
status_counts = {
|
656 |
+
"QUEUED": 0,
|
657 |
+
"RUNNING": 0,
|
658 |
+
"COMPLETED": 0,
|
659 |
+
"FAILED": 0,
|
660 |
+
"CANCELLED": 0
|
661 |
+
}
|
662 |
+
|
663 |
+
for job in jobs:
|
664 |
+
if hasattr(job, 'status'):
|
665 |
+
status = str(job.status) # Use str() for safety
|
666 |
+
if status in status_counts:
|
667 |
+
status_counts[status] += 1
|
668 |
+
|
669 |
+
# Format the display text
|
670 |
+
stats_text = f"Queue: {status_counts['QUEUED']} | Running: {status_counts['RUNNING']} | Completed: {status_counts['COMPLETED']} | Failed: {status_counts['FAILED']} | Cancelled: {status_counts['CANCELLED']}"
|
671 |
+
|
672 |
+
return f"<p style='margin:0;color:white;'>{stats_text}</p>"
|
673 |
+
|
674 |
+
except Exception as e:
|
675 |
+
print(f"Error getting queue stats: {e}")
|
676 |
+
return "<p style='margin:0;color:white;'>Error loading queue stats</p>"
|
677 |
+
|
678 |
+
# Add footer with social links
|
679 |
+
with gr.Row(elem_id="footer"):
|
680 |
+
with gr.Column(scale=1):
|
681 |
+
gr.HTML("""
|
682 |
+
<div style="text-align: center; padding: 20px; color: #666;">
|
683 |
+
<div style="margin-top: 10px;">
|
684 |
+
<a href="https://patreon.com/Colinu" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
|
685 |
+
<i class="fab fa-patreon"></i>Support on Patreon
|
686 |
+
</a>
|
687 |
+
<a href="https://discord.gg/MtuM7gFJ3V" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
|
688 |
+
<i class="fab fa-discord"></i> Discord
|
689 |
+
</a>
|
690 |
+
<a href="https://github.com/colinurbs/FramePack-Studio" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
|
691 |
+
<i class="fab fa-github"></i> GitHub
|
692 |
+
</a>
|
693 |
+
</div>
|
694 |
+
</div>
|
695 |
+
""")
|
696 |
+
|
697 |
+
# Add CSS for footer
|
698 |
+
|
699 |
+
return block
|
700 |
+
|
701 |
+
|
702 |
+
# --- Top-level Helper Functions (Used by Gradio callbacks, must be defined outside create_interface) ---
|
703 |
+
|
704 |
+
def format_queue_status(jobs):
|
705 |
+
"""Format job data for display in the queue status table"""
|
706 |
+
rows = []
|
707 |
+
for job in jobs:
|
708 |
+
created = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(job.created_at)) if job.created_at else ""
|
709 |
+
started = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(job.started_at)) if job.started_at else ""
|
710 |
+
completed = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(job.completed_at)) if job.completed_at else ""
|
711 |
+
|
712 |
+
# Calculate elapsed time
|
713 |
+
elapsed_time = ""
|
714 |
+
if job.started_at:
|
715 |
+
if job.completed_at:
|
716 |
+
start_datetime = datetime.datetime.fromtimestamp(job.started_at)
|
717 |
+
complete_datetime = datetime.datetime.fromtimestamp(job.completed_at)
|
718 |
+
elapsed_seconds = (complete_datetime - start_datetime).total_seconds()
|
719 |
+
elapsed_time = f"{elapsed_seconds:.2f}s"
|
720 |
+
else:
|
721 |
+
# For running jobs, calculate elapsed time from now
|
722 |
+
start_datetime = datetime.datetime.fromtimestamp(job.started_at)
|
723 |
+
current_datetime = datetime.datetime.now()
|
724 |
+
elapsed_seconds = (current_datetime - start_datetime).total_seconds()
|
725 |
+
elapsed_time = f"{elapsed_seconds:.2f}s (running)"
|
726 |
+
|
727 |
+
# Get generation type from job data
|
728 |
+
generation_type = getattr(job, 'generation_type', 'Original')
|
729 |
+
|
730 |
+
# Removed thumbnail processing
|
731 |
+
|
732 |
+
rows.append([
|
733 |
+
job.id[:6] + '...',
|
734 |
+
generation_type,
|
735 |
+
job.status.value,
|
736 |
+
created,
|
737 |
+
started,
|
738 |
+
completed,
|
739 |
+
elapsed_time
|
740 |
+
# Removed thumbnail from row data
|
741 |
+
])
|
742 |
+
return rows
|
743 |
+
|
744 |
+
# Create the queue status update function (wrapper around format_queue_status)
|
745 |
+
def update_queue_status_with_thumbnails(): # Function name is now slightly misleading, but keep for now to avoid breaking clicks
|
746 |
+
# This function is likely called by the refresh button and potentially the timer
|
747 |
+
# It needs access to the job_queue object
|
748 |
+
# Assuming job_queue is accessible globally or passed appropriately
|
749 |
+
# For now, let's assume it's globally accessible as defined in studio.py
|
750 |
+
# If not, this needs adjustment based on how job_queue is managed.
|
751 |
+
try:
|
752 |
+
# Need access to the global job_queue instance from studio.py
|
753 |
+
# This might require restructuring or passing job_queue differently.
|
754 |
+
# For now, assuming it's accessible (this might fail if run standalone)
|
755 |
+
from __main__ import job_queue # Attempt to import from main script scope
|
756 |
+
|
757 |
+
jobs = job_queue.get_all_jobs()
|
758 |
+
for job in jobs:
|
759 |
+
if job.status == JobStatus.PENDING:
|
760 |
+
job.queue_position = job_queue.get_queue_position(job.id)
|
761 |
+
|
762 |
+
if job_queue.current_job:
|
763 |
+
job_queue.current_job.status = JobStatus.RUNNING
|
764 |
+
|
765 |
+
return format_queue_status(jobs)
|
766 |
+
except ImportError:
|
767 |
+
print("Error: Could not import job_queue. Queue status update might fail.")
|
768 |
+
return [] # Return empty list on error
|
769 |
+
except Exception as e:
|
770 |
+
print(f"Error updating queue status: {e}")
|
771 |
+
return []
|
modules/prompt_handler.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class PromptSection:
|
8 |
+
"""Represents a section of the prompt with specific timing information"""
|
9 |
+
prompt: str
|
10 |
+
start_time: float = 0 # in seconds
|
11 |
+
end_time: Optional[float] = None # in seconds, None means until the end
|
12 |
+
|
13 |
+
|
14 |
+
def snap_to_section_boundaries(prompt_sections: List[PromptSection], latent_window_size: int, fps: int = 30) -> List[PromptSection]:
|
15 |
+
"""
|
16 |
+
Adjust timestamps to align with model's internal section boundaries
|
17 |
+
|
18 |
+
Args:
|
19 |
+
prompt_sections: List of PromptSection objects
|
20 |
+
latent_window_size: Size of the latent window used in the model
|
21 |
+
fps: Frames per second (default: 30)
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
List of PromptSection objects with aligned timestamps
|
25 |
+
"""
|
26 |
+
section_duration = (latent_window_size * 4 - 3) / fps # Duration of one section in seconds
|
27 |
+
|
28 |
+
aligned_sections = []
|
29 |
+
for section in prompt_sections:
|
30 |
+
# Snap start time to nearest section boundary
|
31 |
+
aligned_start = round(section.start_time / section_duration) * section_duration
|
32 |
+
|
33 |
+
# Snap end time to nearest section boundary
|
34 |
+
aligned_end = None
|
35 |
+
if section.end_time is not None:
|
36 |
+
aligned_end = round(section.end_time / section_duration) * section_duration
|
37 |
+
|
38 |
+
# Ensure minimum section length
|
39 |
+
if aligned_end is not None and aligned_end <= aligned_start:
|
40 |
+
aligned_end = aligned_start + section_duration
|
41 |
+
|
42 |
+
aligned_sections.append(PromptSection(
|
43 |
+
prompt=section.prompt,
|
44 |
+
start_time=aligned_start,
|
45 |
+
end_time=aligned_end
|
46 |
+
))
|
47 |
+
|
48 |
+
return aligned_sections
|
49 |
+
|
50 |
+
|
51 |
+
def parse_timestamped_prompt(prompt_text: str, total_duration: float, latent_window_size: int = 9, generation_type: str = "Original") -> List[PromptSection]:
|
52 |
+
"""
|
53 |
+
Parse a prompt with timestamps in the format [0s-2s: text] or [3s: text]
|
54 |
+
|
55 |
+
Args:
|
56 |
+
prompt_text: The input prompt text with optional timestamp sections
|
57 |
+
total_duration: Total duration of the video in seconds
|
58 |
+
latent_window_size: Size of the latent window used in the model
|
59 |
+
generation_type: Type of generation ("Original" or "F1")
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
List of PromptSection objects with timestamps aligned to section boundaries
|
63 |
+
and reversed to account for reverse generation (only for Original type)
|
64 |
+
"""
|
65 |
+
# Default prompt for the entire duration if no timestamps are found
|
66 |
+
if "[" not in prompt_text or "]" not in prompt_text:
|
67 |
+
return [PromptSection(prompt=prompt_text.strip())]
|
68 |
+
|
69 |
+
sections = []
|
70 |
+
# Find all timestamp sections [time: text]
|
71 |
+
timestamp_pattern = r'\[(\d+(?:\.\d+)?s)(?:-(\d+(?:\.\d+)?s))?\s*:\s*(.*?)\]'
|
72 |
+
regular_text = prompt_text
|
73 |
+
|
74 |
+
for match in re.finditer(timestamp_pattern, prompt_text):
|
75 |
+
start_time_str = match.group(1)
|
76 |
+
end_time_str = match.group(2)
|
77 |
+
section_text = match.group(3).strip()
|
78 |
+
|
79 |
+
# Convert time strings to seconds
|
80 |
+
start_time = float(start_time_str.rstrip('s'))
|
81 |
+
end_time = float(end_time_str.rstrip('s')) if end_time_str else None
|
82 |
+
|
83 |
+
sections.append(PromptSection(
|
84 |
+
prompt=section_text,
|
85 |
+
start_time=start_time,
|
86 |
+
end_time=end_time
|
87 |
+
))
|
88 |
+
|
89 |
+
# Remove the processed section from regular_text
|
90 |
+
regular_text = regular_text.replace(match.group(0), "")
|
91 |
+
|
92 |
+
# If there's any text outside of timestamp sections, use it as a default for the entire duration
|
93 |
+
regular_text = regular_text.strip()
|
94 |
+
if regular_text:
|
95 |
+
sections.append(PromptSection(
|
96 |
+
prompt=regular_text,
|
97 |
+
start_time=0,
|
98 |
+
end_time=None
|
99 |
+
))
|
100 |
+
|
101 |
+
# Sort sections by start time
|
102 |
+
sections.sort(key=lambda x: x.start_time)
|
103 |
+
|
104 |
+
# Fill in end times if not specified
|
105 |
+
for i in range(len(sections) - 1):
|
106 |
+
if sections[i].end_time is None:
|
107 |
+
sections[i].end_time = sections[i+1].start_time
|
108 |
+
|
109 |
+
# Set the last section's end time to the total duration if not specified
|
110 |
+
if sections and sections[-1].end_time is None:
|
111 |
+
sections[-1].end_time = total_duration
|
112 |
+
|
113 |
+
# Snap timestamps to section boundaries
|
114 |
+
sections = snap_to_section_boundaries(sections, latent_window_size)
|
115 |
+
|
116 |
+
# Only reverse timestamps for Original generation type
|
117 |
+
if generation_type == "Original":
|
118 |
+
# Now reverse the timestamps to account for reverse generation
|
119 |
+
reversed_sections = []
|
120 |
+
for section in sections:
|
121 |
+
reversed_start = total_duration - section.end_time if section.end_time is not None else 0
|
122 |
+
reversed_end = total_duration - section.start_time
|
123 |
+
reversed_sections.append(PromptSection(
|
124 |
+
prompt=section.prompt,
|
125 |
+
start_time=reversed_start,
|
126 |
+
end_time=reversed_end
|
127 |
+
))
|
128 |
+
|
129 |
+
# Sort the reversed sections by start time
|
130 |
+
reversed_sections.sort(key=lambda x: x.start_time)
|
131 |
+
return reversed_sections
|
132 |
+
|
133 |
+
return sections
|
134 |
+
|
135 |
+
|
136 |
+
def get_section_boundaries(latent_window_size: int = 9, count: int = 10) -> str:
|
137 |
+
"""
|
138 |
+
Calculate and format section boundaries for UI display
|
139 |
+
|
140 |
+
Args:
|
141 |
+
latent_window_size: Size of the latent window used in the model
|
142 |
+
count: Number of boundaries to display
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
Formatted string of section boundaries
|
146 |
+
"""
|
147 |
+
section_duration = (latent_window_size * 4 - 3) / 30
|
148 |
+
return ", ".join([f"{i*section_duration:.1f}s" for i in range(count)])
|
149 |
+
|
150 |
+
|
151 |
+
def get_quick_prompts() -> List[List[str]]:
|
152 |
+
"""
|
153 |
+
Get a list of example timestamped prompts
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
List of example prompts formatted for Gradio Dataset
|
157 |
+
"""
|
158 |
+
prompts = [
|
159 |
+
'[0s: The person waves hello] [2s: The person jumps up and down] [4s: The person does a spin]',
|
160 |
+
'[0s: The person raises both arms slowly] [2s: The person claps hands enthusiastically]',
|
161 |
+
'[0s: Person gives thumbs up] [1.1s: Person smiles and winks] [2.2s: Person shows two thumbs down]',
|
162 |
+
'[0s: Person looks surprised] [1.1s: Person raises arms above head] [2.2s-3.3s: Person puts hands on hips]'
|
163 |
+
]
|
164 |
+
return [[x] for x in prompts]
|
modules/settings.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, Any, Optional
|
4 |
+
import os
|
5 |
+
|
6 |
+
class Settings:
|
7 |
+
def __init__(self):
|
8 |
+
# Get the project root directory (where settings.py is located)
|
9 |
+
project_root = Path(__file__).parent.parent
|
10 |
+
|
11 |
+
self.settings_file = project_root / ".framepack" / "settings.json"
|
12 |
+
self.settings_file.parent.mkdir(parents=True, exist_ok=True)
|
13 |
+
|
14 |
+
# Set default paths relative to project root
|
15 |
+
self.default_settings = {
|
16 |
+
"save_metadata": True,
|
17 |
+
"gpu_memory_preservation": 6,
|
18 |
+
"output_dir": str(project_root / "outputs"),
|
19 |
+
"metadata_dir": str(project_root / "outputs"),
|
20 |
+
"lora_dir": str(project_root / "loras"),
|
21 |
+
"gradio_temp_dir": str(project_root / "temp"),
|
22 |
+
"auto_save_settings": True,
|
23 |
+
"gradio_theme": "base",
|
24 |
+
"mp4_crf": 16,
|
25 |
+
"clean_up_videos": True
|
26 |
+
}
|
27 |
+
self.settings = self.load_settings()
|
28 |
+
|
29 |
+
def load_settings(self) -> Dict[str, Any]:
|
30 |
+
"""Load settings from file or return defaults"""
|
31 |
+
if self.settings_file.exists():
|
32 |
+
try:
|
33 |
+
with open(self.settings_file, 'r') as f:
|
34 |
+
loaded_settings = json.load(f)
|
35 |
+
# Merge with defaults to ensure all settings exist
|
36 |
+
settings = self.default_settings.copy()
|
37 |
+
settings.update(loaded_settings)
|
38 |
+
return settings
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading settings: {e}")
|
41 |
+
return self.default_settings.copy()
|
42 |
+
return self.default_settings.copy()
|
43 |
+
|
44 |
+
def save_settings(self, **kwargs):
|
45 |
+
"""Save settings to file. Accepts keyword arguments for any settings to update."""
|
46 |
+
# Update self.settings with any provided keyword arguments
|
47 |
+
self.settings.update(kwargs)
|
48 |
+
# Ensure all default fields are present
|
49 |
+
for k, v in self.default_settings.items():
|
50 |
+
self.settings.setdefault(k, v)
|
51 |
+
|
52 |
+
# Ensure directories exist for relevant fields
|
53 |
+
for dir_key in ["output_dir", "metadata_dir", "lora_dir", "gradio_temp_dir"]:
|
54 |
+
dir_path = self.settings.get(dir_key)
|
55 |
+
if dir_path:
|
56 |
+
os.makedirs(dir_path, exist_ok=True)
|
57 |
+
|
58 |
+
# Save to file
|
59 |
+
with open(self.settings_file, 'w') as f:
|
60 |
+
json.dump(self.settings, f, indent=4)
|
61 |
+
|
62 |
+
def get(self, key: str, default: Any = None) -> Any:
|
63 |
+
"""Get a setting value"""
|
64 |
+
return self.settings.get(key, default)
|
65 |
+
|
66 |
+
def set(self, key: str, value: Any) -> None:
|
67 |
+
"""Set a setting value"""
|
68 |
+
self.settings[key] = value
|
69 |
+
if self.settings.get("auto_save_settings", True):
|
70 |
+
self.save_settings()
|
71 |
+
|
72 |
+
def update(self, settings: Dict[str, Any]) -> None:
|
73 |
+
"""Update multiple settings at once"""
|
74 |
+
self.settings.update(settings)
|
75 |
+
if self.settings.get("auto_save_settings", True):
|
76 |
+
self.save_settings()
|
modules/video_queue.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
import time
|
3 |
+
import uuid
|
4 |
+
from dataclasses import dataclass, field
|
5 |
+
from enum import Enum
|
6 |
+
from typing import Dict, Any, Optional, List
|
7 |
+
import queue as queue_module # Renamed to avoid conflicts
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
from PIL import Image
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from diffusers_helper.thread_utils import AsyncStream
|
14 |
+
|
15 |
+
|
16 |
+
# Simple LIFO queue implementation to avoid dependency on queue.LifoQueue
|
17 |
+
class SimpleLifoQueue:
|
18 |
+
def __init__(self):
|
19 |
+
self._queue = []
|
20 |
+
self._mutex = threading.Lock()
|
21 |
+
self._not_empty = threading.Condition(self._mutex)
|
22 |
+
|
23 |
+
def put(self, item):
|
24 |
+
with self._mutex:
|
25 |
+
self._queue.append(item)
|
26 |
+
self._not_empty.notify()
|
27 |
+
|
28 |
+
def get(self):
|
29 |
+
with self._not_empty:
|
30 |
+
while not self._queue:
|
31 |
+
self._not_empty.wait()
|
32 |
+
return self._queue.pop()
|
33 |
+
|
34 |
+
def task_done(self):
|
35 |
+
pass # For compatibility with queue.Queue
|
36 |
+
|
37 |
+
|
38 |
+
class JobStatus(Enum):
|
39 |
+
PENDING = "pending"
|
40 |
+
RUNNING = "running"
|
41 |
+
COMPLETED = "completed"
|
42 |
+
FAILED = "failed"
|
43 |
+
CANCELLED = "cancelled"
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class Job:
|
48 |
+
id: str
|
49 |
+
params: Dict[str, Any]
|
50 |
+
status: JobStatus = JobStatus.PENDING
|
51 |
+
created_at: float = field(default_factory=time.time)
|
52 |
+
started_at: Optional[float] = None
|
53 |
+
completed_at: Optional[float] = None
|
54 |
+
error: Optional[str] = None
|
55 |
+
result: Optional[str] = None
|
56 |
+
progress_data: Optional[Dict] = None
|
57 |
+
queue_position: Optional[int] = None
|
58 |
+
stream: Optional[Any] = None
|
59 |
+
input_image: Optional[np.ndarray] = None
|
60 |
+
latent_type: Optional[str] = None
|
61 |
+
thumbnail: Optional[str] = None
|
62 |
+
generation_type: Optional[str] = None # Added generation_type
|
63 |
+
|
64 |
+
def __post_init__(self):
|
65 |
+
# Store generation type
|
66 |
+
self.generation_type = self.params.get('model_type', 'Original') # Initialize generation_type
|
67 |
+
|
68 |
+
# Store input image or latent type
|
69 |
+
if 'input_image' in self.params and self.params['input_image'] is not None:
|
70 |
+
self.input_image = self.params['input_image']
|
71 |
+
# Create thumbnail
|
72 |
+
img = Image.fromarray(self.input_image)
|
73 |
+
img.thumbnail((100, 100))
|
74 |
+
buffered = io.BytesIO()
|
75 |
+
img.save(buffered, format="PNG")
|
76 |
+
self.thumbnail = f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
77 |
+
elif 'latent_type' in self.params:
|
78 |
+
self.latent_type = self.params['latent_type']
|
79 |
+
# Create a colored square based on latent type
|
80 |
+
color_map = {
|
81 |
+
"Black": (0, 0, 0),
|
82 |
+
"White": (255, 255, 255),
|
83 |
+
"Noise": (128, 128, 128),
|
84 |
+
"Green Screen": (0, 177, 64)
|
85 |
+
}
|
86 |
+
color = color_map.get(self.latent_type, (0, 0, 0))
|
87 |
+
img = Image.new('RGB', (100, 100), color)
|
88 |
+
buffered = io.BytesIO()
|
89 |
+
img.save(buffered, format="PNG")
|
90 |
+
self.thumbnail = f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
91 |
+
|
92 |
+
|
93 |
+
class VideoJobQueue:
|
94 |
+
def __init__(self):
|
95 |
+
self.queue = queue_module.Queue() # Using standard Queue instead of LifoQueue
|
96 |
+
self.jobs = {}
|
97 |
+
self.current_job = None
|
98 |
+
self.lock = threading.Lock()
|
99 |
+
self.worker_thread = threading.Thread(target=self._worker_loop, daemon=True)
|
100 |
+
self.worker_thread.start()
|
101 |
+
self.worker_function = None # Will be set from outside
|
102 |
+
self.is_processing = False # Flag to track if we're currently processing a job
|
103 |
+
|
104 |
+
def set_worker_function(self, worker_function):
|
105 |
+
"""Set the worker function to use for processing jobs"""
|
106 |
+
self.worker_function = worker_function
|
107 |
+
|
108 |
+
def add_job(self, params):
|
109 |
+
"""Add a job to the queue and return its ID"""
|
110 |
+
job_id = str(uuid.uuid4())
|
111 |
+
job = Job(
|
112 |
+
id=job_id,
|
113 |
+
params=params,
|
114 |
+
status=JobStatus.PENDING,
|
115 |
+
created_at=time.time(),
|
116 |
+
progress_data={},
|
117 |
+
stream=AsyncStream()
|
118 |
+
)
|
119 |
+
|
120 |
+
with self.lock:
|
121 |
+
print(f"Adding job {job_id} to queue, current job is {self.current_job.id if self.current_job else 'None'}")
|
122 |
+
self.jobs[job_id] = job
|
123 |
+
self.queue.put(job_id)
|
124 |
+
|
125 |
+
return job_id
|
126 |
+
|
127 |
+
def get_job(self, job_id):
|
128 |
+
"""Get job by ID"""
|
129 |
+
with self.lock:
|
130 |
+
return self.jobs.get(job_id)
|
131 |
+
|
132 |
+
def get_all_jobs(self):
|
133 |
+
"""Get all jobs"""
|
134 |
+
with self.lock:
|
135 |
+
return list(self.jobs.values())
|
136 |
+
|
137 |
+
def cancel_job(self, job_id):
|
138 |
+
"""Cancel a pending job"""
|
139 |
+
with self.lock:
|
140 |
+
job = self.jobs.get(job_id)
|
141 |
+
if job and job.status == JobStatus.PENDING:
|
142 |
+
job.status = JobStatus.CANCELLED
|
143 |
+
job.completed_at = time.time() # Mark completion time
|
144 |
+
return True
|
145 |
+
elif job and job.status == JobStatus.RUNNING:
|
146 |
+
# Send cancel signal to the job's stream
|
147 |
+
job.stream.input_queue.push('end')
|
148 |
+
# Mark job as cancelled (this will be confirmed when the worker processes the end signal)
|
149 |
+
job.status = JobStatus.CANCELLED
|
150 |
+
job.completed_at = time.time() # Mark completion time
|
151 |
+
return True
|
152 |
+
return False
|
153 |
+
|
154 |
+
def get_queue_position(self, job_id):
|
155 |
+
"""Get position in queue (0 = currently running)"""
|
156 |
+
with self.lock:
|
157 |
+
job = self.jobs.get(job_id)
|
158 |
+
if not job:
|
159 |
+
return None
|
160 |
+
|
161 |
+
if job.status == JobStatus.RUNNING:
|
162 |
+
return 0
|
163 |
+
|
164 |
+
if job.status != JobStatus.PENDING:
|
165 |
+
return None
|
166 |
+
|
167 |
+
# Count pending jobs ahead in queue
|
168 |
+
position = 1 # Start at 1 because 0 means running
|
169 |
+
for j in self.jobs.values():
|
170 |
+
if (j.status == JobStatus.PENDING and
|
171 |
+
j.created_at < job.created_at):
|
172 |
+
position += 1
|
173 |
+
return position
|
174 |
+
|
175 |
+
def update_job_progress(self, job_id, progress_data):
|
176 |
+
"""Update job progress data"""
|
177 |
+
with self.lock:
|
178 |
+
job = self.jobs.get(job_id)
|
179 |
+
if job:
|
180 |
+
job.progress_data = progress_data
|
181 |
+
|
182 |
+
def _worker_loop(self):
|
183 |
+
"""Worker thread that processes jobs from the queue"""
|
184 |
+
while True:
|
185 |
+
try:
|
186 |
+
# Get the next job ID from the queue
|
187 |
+
try:
|
188 |
+
job_id = self.queue.get(block=True, timeout=1.0) # Use timeout to allow periodic checks
|
189 |
+
except queue_module.Empty:
|
190 |
+
# No jobs in queue, just continue the loop
|
191 |
+
continue
|
192 |
+
|
193 |
+
with self.lock:
|
194 |
+
job = self.jobs.get(job_id)
|
195 |
+
if not job:
|
196 |
+
self.queue.task_done()
|
197 |
+
continue
|
198 |
+
|
199 |
+
# Skip cancelled jobs
|
200 |
+
if job.status == JobStatus.CANCELLED:
|
201 |
+
self.queue.task_done()
|
202 |
+
continue
|
203 |
+
|
204 |
+
# If we're already processing a job, wait for it to complete
|
205 |
+
if self.is_processing:
|
206 |
+
# Put the job back in the queue
|
207 |
+
self.queue.put(job_id)
|
208 |
+
self.queue.task_done()
|
209 |
+
time.sleep(0.1) # Small delay to prevent busy waiting
|
210 |
+
continue
|
211 |
+
|
212 |
+
print(f"Starting job {job_id}, current job was {self.current_job.id if self.current_job else 'None'}")
|
213 |
+
job.status = JobStatus.RUNNING
|
214 |
+
job.started_at = time.time()
|
215 |
+
self.current_job = job
|
216 |
+
self.is_processing = True
|
217 |
+
|
218 |
+
job_completed = False
|
219 |
+
|
220 |
+
try:
|
221 |
+
if self.worker_function is None:
|
222 |
+
raise ValueError("Worker function not set. Call set_worker_function() first.")
|
223 |
+
|
224 |
+
# Start the worker function with the job parameters
|
225 |
+
from diffusers_helper.thread_utils import async_run
|
226 |
+
async_run(
|
227 |
+
self.worker_function,
|
228 |
+
**job.params,
|
229 |
+
job_stream=job.stream
|
230 |
+
)
|
231 |
+
|
232 |
+
# Process the results from the stream
|
233 |
+
output_filename = None
|
234 |
+
|
235 |
+
# Set a maximum time to wait for the job to complete
|
236 |
+
max_wait_time = 3600 # 1 hour in seconds
|
237 |
+
start_time = time.time()
|
238 |
+
last_activity_time = time.time()
|
239 |
+
|
240 |
+
while True:
|
241 |
+
# Check if job has been cancelled before processing next output
|
242 |
+
with self.lock:
|
243 |
+
if job.status == JobStatus.CANCELLED:
|
244 |
+
print(f"Job {job_id} was cancelled, breaking out of processing loop")
|
245 |
+
job_completed = True
|
246 |
+
break
|
247 |
+
|
248 |
+
# Check if we've been waiting too long without any activity
|
249 |
+
current_time = time.time()
|
250 |
+
if current_time - start_time > max_wait_time:
|
251 |
+
print(f"Job {job_id} timed out after {max_wait_time} seconds")
|
252 |
+
with self.lock:
|
253 |
+
job.status = JobStatus.FAILED
|
254 |
+
job.error = "Job timed out"
|
255 |
+
job.completed_at = time.time()
|
256 |
+
job_completed = True
|
257 |
+
break
|
258 |
+
|
259 |
+
# Check for inactivity (no output for a while)
|
260 |
+
if current_time - last_activity_time > 60: # 1 minute of inactivity
|
261 |
+
print(f"Checking if job {job_id} is still active...")
|
262 |
+
# Just a periodic check, don't break yet
|
263 |
+
|
264 |
+
try:
|
265 |
+
# Try to get data from the queue with a non-blocking approach
|
266 |
+
flag, data = job.stream.output_queue.next()
|
267 |
+
|
268 |
+
# Update activity time since we got some data
|
269 |
+
last_activity_time = time.time()
|
270 |
+
|
271 |
+
if flag == 'file':
|
272 |
+
output_filename = data
|
273 |
+
with self.lock:
|
274 |
+
job.result = output_filename
|
275 |
+
|
276 |
+
elif flag == 'progress':
|
277 |
+
preview, desc, html = data
|
278 |
+
with self.lock:
|
279 |
+
job.progress_data = {
|
280 |
+
'preview': preview,
|
281 |
+
'desc': desc,
|
282 |
+
'html': html
|
283 |
+
}
|
284 |
+
|
285 |
+
elif flag == 'end':
|
286 |
+
print(f"Received end signal for job {job_id}")
|
287 |
+
job_completed = True
|
288 |
+
break
|
289 |
+
|
290 |
+
except IndexError:
|
291 |
+
# Queue is empty, wait a bit and try again
|
292 |
+
time.sleep(0.1)
|
293 |
+
continue
|
294 |
+
except Exception as e:
|
295 |
+
print(f"Error processing job output: {e}")
|
296 |
+
# Wait a bit before trying again
|
297 |
+
time.sleep(0.1)
|
298 |
+
continue
|
299 |
+
except Exception as e:
|
300 |
+
import traceback
|
301 |
+
traceback.print_exc()
|
302 |
+
print(f"Error processing job {job_id}: {e}")
|
303 |
+
with self.lock:
|
304 |
+
job.status = JobStatus.FAILED
|
305 |
+
job.error = str(e)
|
306 |
+
job.completed_at = time.time()
|
307 |
+
job_completed = True
|
308 |
+
|
309 |
+
finally:
|
310 |
+
with self.lock:
|
311 |
+
# Make sure we properly clean up the job state
|
312 |
+
if job.status == JobStatus.RUNNING:
|
313 |
+
if job_completed:
|
314 |
+
job.status = JobStatus.COMPLETED
|
315 |
+
else:
|
316 |
+
# Something went wrong but we didn't mark it as completed
|
317 |
+
job.status = JobStatus.FAILED
|
318 |
+
job.error = "Job processing was interrupted"
|
319 |
+
|
320 |
+
job.completed_at = time.time()
|
321 |
+
|
322 |
+
print(f"Finishing job {job_id} with status {job.status}")
|
323 |
+
self.is_processing = False
|
324 |
+
self.current_job = None
|
325 |
+
self.queue.task_done()
|
326 |
+
|
327 |
+
except Exception as e:
|
328 |
+
import traceback
|
329 |
+
traceback.print_exc()
|
330 |
+
print(f"Error in worker loop: {e}")
|
331 |
+
|
332 |
+
# Make sure we reset processing state if there was an error
|
333 |
+
with self.lock:
|
334 |
+
self.is_processing = False
|
335 |
+
if self.current_job:
|
336 |
+
self.current_job.status = JobStatus.FAILED
|
337 |
+
self.current_job.error = f"Worker loop error: {str(e)}"
|
338 |
+
self.current_job.completed_at = time.time()
|
339 |
+
self.current_job = None
|
340 |
+
|
341 |
+
time.sleep(0.5) # Prevent tight loop on error
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.6.0
|
2 |
+
diffusers==0.33.1
|
3 |
+
transformers==4.46.2
|
4 |
+
gradio==5.25.2
|
5 |
+
sentencepiece==0.2.0
|
6 |
+
pillow==11.1.0
|
7 |
+
av==12.1.0
|
8 |
+
numpy==1.26.2
|
9 |
+
scipy==1.12.0
|
10 |
+
requests==2.31.0
|
11 |
+
torchsde==0.2.6
|
12 |
+
jinja2>=3.1.2
|
13 |
+
torchvision
|
14 |
+
einops
|
15 |
+
opencv-contrib-python
|
16 |
+
safetensors
|
17 |
+
peft
|
studio.py
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from pathlib import PurePath
|
6 |
+
import time
|
7 |
+
import argparse
|
8 |
+
import traceback
|
9 |
+
import einops
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import datetime
|
13 |
+
|
14 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
15 |
+
|
16 |
+
import gradio as gr
|
17 |
+
from PIL import Image
|
18 |
+
from PIL.PngImagePlugin import PngInfo
|
19 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
20 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
21 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
22 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp
|
23 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
24 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
25 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
26 |
+
from diffusers_helper.thread_utils import AsyncStream
|
27 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_html
|
28 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
29 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
30 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
31 |
+
from diffusers_helper import lora_utils
|
32 |
+
from diffusers_helper.lora_utils import load_lora, unload_all_loras
|
33 |
+
|
34 |
+
# Import model generators
|
35 |
+
from modules.generators import create_model_generator
|
36 |
+
|
37 |
+
# Global cache for prompt embeddings
|
38 |
+
prompt_embedding_cache = {}
|
39 |
+
# Import from modules
|
40 |
+
from modules.video_queue import VideoJobQueue, JobStatus
|
41 |
+
from modules.prompt_handler import parse_timestamped_prompt
|
42 |
+
from modules.interface import create_interface, format_queue_status
|
43 |
+
from modules.settings import Settings
|
44 |
+
|
45 |
+
# ADDED: Debug function to verify LoRA state
|
46 |
+
def verify_lora_state(transformer, label=""):
|
47 |
+
"""Debug function to verify the state of LoRAs in a transformer model"""
|
48 |
+
if transformer is None:
|
49 |
+
print(f"[{label}] Transformer is None, cannot verify LoRA state")
|
50 |
+
return
|
51 |
+
|
52 |
+
has_loras = False
|
53 |
+
if hasattr(transformer, 'peft_config'):
|
54 |
+
adapter_names = list(transformer.peft_config.keys()) if transformer.peft_config else []
|
55 |
+
if adapter_names:
|
56 |
+
has_loras = True
|
57 |
+
print(f"[{label}] Transformer has LoRAs: {', '.join(adapter_names)}")
|
58 |
+
else:
|
59 |
+
print(f"[{label}] Transformer has no LoRAs in peft_config")
|
60 |
+
else:
|
61 |
+
print(f"[{label}] Transformer has no peft_config attribute")
|
62 |
+
|
63 |
+
# Check for any LoRA modules
|
64 |
+
for name, module in transformer.named_modules():
|
65 |
+
if hasattr(module, 'lora_A') and module.lora_A:
|
66 |
+
has_loras = True
|
67 |
+
# print(f"[{label}] Found lora_A in module {name}")
|
68 |
+
if hasattr(module, 'lora_B') and module.lora_B:
|
69 |
+
has_loras = True
|
70 |
+
# print(f"[{label}] Found lora_B in module {name}")
|
71 |
+
|
72 |
+
if not has_loras:
|
73 |
+
print(f"[{label}] No LoRA components found in transformer")
|
74 |
+
|
75 |
+
|
76 |
+
parser = argparse.ArgumentParser()
|
77 |
+
parser.add_argument('--share', action='store_true')
|
78 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
79 |
+
parser.add_argument("--port", type=int, required=False)
|
80 |
+
parser.add_argument("--inbrowser", action='store_true')
|
81 |
+
parser.add_argument("--lora", type=str, default=None, help="Lora path (comma separated for multiple)")
|
82 |
+
args = parser.parse_args()
|
83 |
+
|
84 |
+
print(args)
|
85 |
+
|
86 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
87 |
+
high_vram = free_mem_gb > 60
|
88 |
+
|
89 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
90 |
+
print(f'High-VRAM Mode: {high_vram}')
|
91 |
+
|
92 |
+
# Load models
|
93 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
94 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
95 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
96 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
97 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
98 |
+
|
99 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
100 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
101 |
+
|
102 |
+
# Initialize model generator placeholder
|
103 |
+
current_generator = None # Will hold the currently active model generator
|
104 |
+
|
105 |
+
# Load models based on VRAM availability later
|
106 |
+
|
107 |
+
# Configure models
|
108 |
+
vae.eval()
|
109 |
+
text_encoder.eval()
|
110 |
+
text_encoder_2.eval()
|
111 |
+
image_encoder.eval()
|
112 |
+
|
113 |
+
if not high_vram:
|
114 |
+
vae.enable_slicing()
|
115 |
+
vae.enable_tiling()
|
116 |
+
|
117 |
+
|
118 |
+
vae.to(dtype=torch.float16)
|
119 |
+
image_encoder.to(dtype=torch.float16)
|
120 |
+
text_encoder.to(dtype=torch.float16)
|
121 |
+
text_encoder_2.to(dtype=torch.float16)
|
122 |
+
|
123 |
+
vae.requires_grad_(False)
|
124 |
+
text_encoder.requires_grad_(False)
|
125 |
+
text_encoder_2.requires_grad_(False)
|
126 |
+
image_encoder.requires_grad_(False)
|
127 |
+
|
128 |
+
# Create lora directory if it doesn't exist
|
129 |
+
lora_dir = os.path.join(os.path.dirname(__file__), 'loras')
|
130 |
+
os.makedirs(lora_dir, exist_ok=True)
|
131 |
+
|
132 |
+
# Initialize LoRA support - moved scanning after settings load
|
133 |
+
lora_names = []
|
134 |
+
lora_values = [] # This seems unused for population, might be related to weights later
|
135 |
+
|
136 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
137 |
+
|
138 |
+
# Define default LoRA folder path relative to the script directory (used if setting is missing)
|
139 |
+
default_lora_folder = os.path.join(script_dir, "loras")
|
140 |
+
os.makedirs(default_lora_folder, exist_ok=True) # Ensure default exists
|
141 |
+
|
142 |
+
if not high_vram:
|
143 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
144 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
145 |
+
else:
|
146 |
+
text_encoder.to(gpu)
|
147 |
+
text_encoder_2.to(gpu)
|
148 |
+
image_encoder.to(gpu)
|
149 |
+
vae.to(gpu)
|
150 |
+
|
151 |
+
stream = AsyncStream()
|
152 |
+
|
153 |
+
outputs_folder = './outputs/'
|
154 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
155 |
+
|
156 |
+
# Initialize settings
|
157 |
+
settings = Settings()
|
158 |
+
|
159 |
+
# --- Populate LoRA names AFTER settings are loaded ---
|
160 |
+
lora_folder_from_settings: str = settings.get("lora_dir", default_lora_folder) # Use setting, fallback to default
|
161 |
+
print(f"Scanning for LoRAs in: {lora_folder_from_settings}")
|
162 |
+
if os.path.isdir(lora_folder_from_settings):
|
163 |
+
try:
|
164 |
+
lora_files = [f for f in os.listdir(lora_folder_from_settings)
|
165 |
+
if f.endswith('.safetensors') or f.endswith('.pt')]
|
166 |
+
for lora_file in lora_files:
|
167 |
+
lora_name = PurePath(lora_file).stem
|
168 |
+
lora_names.append(lora_name) # Get name without extension
|
169 |
+
print(f"Found LoRAs: {lora_names}")
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Error scanning LoRA directory '{lora_folder_from_settings}': {e}")
|
172 |
+
else:
|
173 |
+
print(f"LoRA directory not found: {lora_folder_from_settings}")
|
174 |
+
# --- End LoRA population ---
|
175 |
+
|
176 |
+
|
177 |
+
# Create job queue
|
178 |
+
job_queue = VideoJobQueue()
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
# Function to load a LoRA file
|
183 |
+
def load_lora_file(lora_file: str | PurePath):
|
184 |
+
if not lora_file:
|
185 |
+
return None, "No file selected"
|
186 |
+
|
187 |
+
try:
|
188 |
+
# Get the filename from the path
|
189 |
+
lora_path = PurePath(lora_file)
|
190 |
+
lora_name = lora_path.name
|
191 |
+
|
192 |
+
# Copy the file to the lora directory
|
193 |
+
lora_dest = PurePath(lora_dir, lora_path)
|
194 |
+
import shutil
|
195 |
+
shutil.copy(lora_file, lora_dest)
|
196 |
+
|
197 |
+
# Load the LoRA
|
198 |
+
global current_generator, lora_names
|
199 |
+
if current_generator is None:
|
200 |
+
return None, "Error: No model loaded to apply LoRA to. Generate something first."
|
201 |
+
|
202 |
+
# Unload any existing LoRAs first
|
203 |
+
current_generator.unload_loras()
|
204 |
+
|
205 |
+
# Load the single LoRA
|
206 |
+
selected_loras = [lora_path.stem]
|
207 |
+
current_generator.load_loras(selected_loras, lora_dir, selected_loras)
|
208 |
+
|
209 |
+
# Add to lora_names if not already there
|
210 |
+
lora_base_name = lora_path.stem
|
211 |
+
if lora_base_name not in lora_names:
|
212 |
+
lora_names.append(lora_base_name)
|
213 |
+
|
214 |
+
# Get the current device of the transformer
|
215 |
+
device = next(current_generator.transformer.parameters()).device
|
216 |
+
|
217 |
+
# Move all LoRA adapters to the same device as the base model
|
218 |
+
current_generator.move_lora_adapters_to_device(device)
|
219 |
+
|
220 |
+
print(f"Loaded LoRA: {lora_name} to {current_generator.get_model_name()} model")
|
221 |
+
|
222 |
+
return gr.update(choices=lora_names), f"Successfully loaded LoRA: {lora_name}"
|
223 |
+
except Exception as e:
|
224 |
+
print(f"Error loading LoRA: {e}")
|
225 |
+
return None, f"Error loading LoRA: {e}"
|
226 |
+
|
227 |
+
@torch.no_grad()
|
228 |
+
def get_cached_or_encode_prompt(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, target_device):
|
229 |
+
"""
|
230 |
+
Retrieves prompt embeddings from cache or encodes them if not found.
|
231 |
+
Stores encoded embeddings (on CPU) in the cache.
|
232 |
+
Returns embeddings moved to the target_device.
|
233 |
+
"""
|
234 |
+
if prompt in prompt_embedding_cache:
|
235 |
+
print(f"Cache hit for prompt: {prompt[:60]}...")
|
236 |
+
llama_vec_cpu, llama_mask_cpu, clip_l_pooler_cpu = prompt_embedding_cache[prompt]
|
237 |
+
# Move cached embeddings (from CPU) to the target device
|
238 |
+
llama_vec = llama_vec_cpu.to(target_device)
|
239 |
+
llama_attention_mask = llama_mask_cpu.to(target_device) if llama_mask_cpu is not None else None
|
240 |
+
clip_l_pooler = clip_l_pooler_cpu.to(target_device)
|
241 |
+
return llama_vec, llama_attention_mask, clip_l_pooler
|
242 |
+
else:
|
243 |
+
print(f"Cache miss for prompt: {prompt[:60]}...")
|
244 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(
|
245 |
+
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
246 |
+
)
|
247 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
248 |
+
# Store CPU copies in cache
|
249 |
+
prompt_embedding_cache[prompt] = (llama_vec.cpu(), llama_attention_mask.cpu() if llama_attention_mask is not None else None, clip_l_pooler.cpu())
|
250 |
+
# Return embeddings already on the target device (as encode_prompt_conds uses the model's device)
|
251 |
+
return llama_vec, llama_attention_mask, clip_l_pooler
|
252 |
+
|
253 |
+
@torch.no_grad()
|
254 |
+
def worker(
|
255 |
+
model_type,
|
256 |
+
input_image,
|
257 |
+
prompt_text,
|
258 |
+
n_prompt,
|
259 |
+
seed,
|
260 |
+
total_second_length,
|
261 |
+
latent_window_size,
|
262 |
+
steps,
|
263 |
+
cfg,
|
264 |
+
gs,
|
265 |
+
rs,
|
266 |
+
use_teacache,
|
267 |
+
blend_sections,
|
268 |
+
latent_type,
|
269 |
+
selected_loras,
|
270 |
+
has_input_image,
|
271 |
+
lora_values=None,
|
272 |
+
job_stream=None,
|
273 |
+
output_dir=None,
|
274 |
+
metadata_dir=None,
|
275 |
+
resolutionW=640, # Add resolution parameter with default value
|
276 |
+
resolutionH=640,
|
277 |
+
lora_loaded_names=[]
|
278 |
+
):
|
279 |
+
global high_vram, current_generator
|
280 |
+
|
281 |
+
# Ensure any existing LoRAs are unloaded from the current generator
|
282 |
+
if current_generator is not None:
|
283 |
+
print("Unloading any existing LoRAs before starting new job")
|
284 |
+
current_generator.unload_loras()
|
285 |
+
import gc
|
286 |
+
gc.collect()
|
287 |
+
if torch.cuda.is_available():
|
288 |
+
torch.cuda.empty_cache()
|
289 |
+
|
290 |
+
stream_to_use = job_stream if job_stream is not None else stream
|
291 |
+
|
292 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
293 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
294 |
+
|
295 |
+
# --- Total progress tracking ---
|
296 |
+
total_steps = total_latent_sections * steps # Total diffusion steps over all segments
|
297 |
+
step_durations = [] # Rolling history of recent step durations for ETA
|
298 |
+
last_step_time = time.time()
|
299 |
+
|
300 |
+
# Parse the timestamped prompt with boundary snapping and reversing
|
301 |
+
# prompt_text should now be the original string from the job queue
|
302 |
+
prompt_sections = parse_timestamped_prompt(prompt_text, total_second_length, latent_window_size, model_type)
|
303 |
+
job_id = generate_timestamp()
|
304 |
+
|
305 |
+
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
306 |
+
|
307 |
+
try:
|
308 |
+
if not high_vram:
|
309 |
+
# Unload everything *except* the potentially active transformer
|
310 |
+
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae)
|
311 |
+
if current_generator is not None and current_generator.transformer is not None:
|
312 |
+
offload_model_from_device_for_memory_preservation(current_generator.transformer, target_device=gpu, preserved_memory_gb=8)
|
313 |
+
|
314 |
+
# --- Model Loading / Switching ---
|
315 |
+
print(f"Worker starting for model type: {model_type}")
|
316 |
+
|
317 |
+
# Create the appropriate model generator
|
318 |
+
new_generator = create_model_generator(
|
319 |
+
model_type,
|
320 |
+
text_encoder=text_encoder,
|
321 |
+
text_encoder_2=text_encoder_2,
|
322 |
+
tokenizer=tokenizer,
|
323 |
+
tokenizer_2=tokenizer_2,
|
324 |
+
vae=vae,
|
325 |
+
image_encoder=image_encoder,
|
326 |
+
feature_extractor=feature_extractor,
|
327 |
+
high_vram=high_vram,
|
328 |
+
prompt_embedding_cache=prompt_embedding_cache,
|
329 |
+
settings=settings
|
330 |
+
)
|
331 |
+
|
332 |
+
# Update the global generator
|
333 |
+
current_generator = new_generator
|
334 |
+
|
335 |
+
# Load the transformer model
|
336 |
+
current_generator.load_model()
|
337 |
+
|
338 |
+
# Ensure the model has no LoRAs loaded
|
339 |
+
print(f"Ensuring {model_type} model has no LoRAs loaded")
|
340 |
+
current_generator.unload_loras()
|
341 |
+
|
342 |
+
# Pre-encode all prompts
|
343 |
+
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding all prompts...'))))
|
344 |
+
|
345 |
+
if not high_vram:
|
346 |
+
fake_diffusers_current_device(text_encoder, gpu)
|
347 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
348 |
+
|
349 |
+
# PROMPT BLENDING: Pre-encode all prompts and store in a list in order
|
350 |
+
unique_prompts = []
|
351 |
+
for section in prompt_sections:
|
352 |
+
if section.prompt not in unique_prompts:
|
353 |
+
unique_prompts.append(section.prompt)
|
354 |
+
|
355 |
+
encoded_prompts = {}
|
356 |
+
for prompt in unique_prompts:
|
357 |
+
# Use the helper function for caching and encoding
|
358 |
+
llama_vec, llama_attention_mask, clip_l_pooler = get_cached_or_encode_prompt(
|
359 |
+
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, gpu
|
360 |
+
)
|
361 |
+
encoded_prompts[prompt] = (llama_vec, llama_attention_mask, clip_l_pooler)
|
362 |
+
|
363 |
+
# PROMPT BLENDING: Build a list of (start_section_idx, prompt) for each prompt
|
364 |
+
prompt_change_indices = []
|
365 |
+
last_prompt = None
|
366 |
+
for idx, section in enumerate(prompt_sections):
|
367 |
+
if section.prompt != last_prompt:
|
368 |
+
prompt_change_indices.append((idx, section.prompt))
|
369 |
+
last_prompt = section.prompt
|
370 |
+
|
371 |
+
# Encode negative prompt
|
372 |
+
if cfg == 1:
|
373 |
+
llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = (
|
374 |
+
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][0]),
|
375 |
+
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][1]),
|
376 |
+
torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][2])
|
377 |
+
)
|
378 |
+
else:
|
379 |
+
# Use the helper function for caching and encoding negative prompt
|
380 |
+
llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = get_cached_or_encode_prompt(
|
381 |
+
n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, gpu
|
382 |
+
)
|
383 |
+
|
384 |
+
# Processing input image
|
385 |
+
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
386 |
+
|
387 |
+
H, W, _ = input_image.shape
|
388 |
+
height, width = find_nearest_bucket(H, W, resolution=resolutionW if has_input_image else (resolutionH+resolutionW)/2)
|
389 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
390 |
+
|
391 |
+
if settings.get("save_metadata"):
|
392 |
+
metadata = PngInfo()
|
393 |
+
# prompt_text should be a string here now
|
394 |
+
metadata.add_text("prompt", prompt_text)
|
395 |
+
metadata.add_text("seed", str(seed))
|
396 |
+
Image.fromarray(input_image_np).save(os.path.join(metadata_dir, f'{job_id}.png'), pnginfo=metadata)
|
397 |
+
|
398 |
+
metadata_dict = {
|
399 |
+
"prompt": prompt_text, # Use the original string
|
400 |
+
"seed": seed,
|
401 |
+
"total_second_length": total_second_length,
|
402 |
+
"steps": steps,
|
403 |
+
"cfg": cfg,
|
404 |
+
"gs": gs,
|
405 |
+
"rs": rs,
|
406 |
+
"latent_type" : latent_type,
|
407 |
+
"blend_sections": blend_sections,
|
408 |
+
"latent_window_size": latent_window_size,
|
409 |
+
"mp4_crf": settings.get("mp4_crf"),
|
410 |
+
"timestamp": time.time(),
|
411 |
+
"resolutionW": resolutionW, # Add resolution to metadata
|
412 |
+
"resolutionH": resolutionH,
|
413 |
+
"model_type": model_type # Add model type to metadata
|
414 |
+
}
|
415 |
+
# Add LoRA information to metadata if LoRAs are used
|
416 |
+
def ensure_list(x):
|
417 |
+
if isinstance(x, list):
|
418 |
+
return x
|
419 |
+
elif x is None:
|
420 |
+
return []
|
421 |
+
else:
|
422 |
+
return [x]
|
423 |
+
|
424 |
+
selected_loras = ensure_list(selected_loras)
|
425 |
+
lora_values = ensure_list(lora_values)
|
426 |
+
|
427 |
+
if selected_loras and len(selected_loras) > 0:
|
428 |
+
lora_data = {}
|
429 |
+
for lora_name in selected_loras:
|
430 |
+
try:
|
431 |
+
idx = lora_loaded_names.index(lora_name)
|
432 |
+
weight = lora_values[idx] if lora_values and idx < len(lora_values) else 1.0
|
433 |
+
if isinstance(weight, list):
|
434 |
+
weight_value = weight[0] if weight and len(weight) > 0 else 1.0
|
435 |
+
else:
|
436 |
+
weight_value = weight
|
437 |
+
lora_data[lora_name] = float(weight_value)
|
438 |
+
except ValueError:
|
439 |
+
lora_data[lora_name] = 1.0
|
440 |
+
metadata_dict["loras"] = lora_data
|
441 |
+
|
442 |
+
with open(os.path.join(metadata_dir, f'{job_id}.json'), 'w') as f:
|
443 |
+
json.dump(metadata_dict, f, indent=2)
|
444 |
+
else:
|
445 |
+
Image.fromarray(input_image_np).save(os.path.join(metadata_dir, f'{job_id}.png'))
|
446 |
+
|
447 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
448 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
449 |
+
|
450 |
+
# VAE encoding
|
451 |
+
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
452 |
+
|
453 |
+
if not high_vram:
|
454 |
+
load_model_as_complete(vae, target_device=gpu)
|
455 |
+
|
456 |
+
start_latent = vae_encode(input_image_pt, vae)
|
457 |
+
|
458 |
+
# CLIP Vision
|
459 |
+
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
460 |
+
|
461 |
+
if not high_vram:
|
462 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
463 |
+
|
464 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
465 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
466 |
+
|
467 |
+
# Dtype
|
468 |
+
for prompt_key in encoded_prompts:
|
469 |
+
llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[prompt_key]
|
470 |
+
llama_vec = llama_vec.to(current_generator.transformer.dtype)
|
471 |
+
clip_l_pooler = clip_l_pooler.to(current_generator.transformer.dtype)
|
472 |
+
encoded_prompts[prompt_key] = (llama_vec, llama_attention_mask, clip_l_pooler)
|
473 |
+
|
474 |
+
llama_vec_n = llama_vec_n.to(current_generator.transformer.dtype)
|
475 |
+
clip_l_pooler_n = clip_l_pooler_n.to(current_generator.transformer.dtype)
|
476 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(current_generator.transformer.dtype)
|
477 |
+
|
478 |
+
# Sampling
|
479 |
+
stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
480 |
+
|
481 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
482 |
+
num_frames = latent_window_size * 4 - 3
|
483 |
+
|
484 |
+
# Initialize history latents based on model type
|
485 |
+
history_latents = current_generator.prepare_history_latents(height, width)
|
486 |
+
|
487 |
+
# For F1 model, initialize with start latent
|
488 |
+
if model_type == "F1":
|
489 |
+
history_latents = current_generator.initialize_with_start_latent(history_latents, start_latent)
|
490 |
+
total_generated_latent_frames = 1 # Start with 1 for F1 model since it includes the first frame
|
491 |
+
|
492 |
+
history_pixels = None
|
493 |
+
if model_type == "Original":
|
494 |
+
total_generated_latent_frames = 0
|
495 |
+
|
496 |
+
# Get latent paddings from the generator
|
497 |
+
latent_paddings = current_generator.get_latent_paddings(total_latent_sections)
|
498 |
+
|
499 |
+
# PROMPT BLENDING: Track section index
|
500 |
+
section_idx = 0
|
501 |
+
|
502 |
+
# Load LoRAs if selected
|
503 |
+
if selected_loras:
|
504 |
+
current_generator.load_loras(selected_loras, lora_folder_from_settings, lora_loaded_names, lora_values)
|
505 |
+
|
506 |
+
# --- Callback for progress ---
|
507 |
+
def callback(d):
|
508 |
+
nonlocal last_step_time, step_durations
|
509 |
+
now_time = time.time()
|
510 |
+
# Record duration between diffusion steps (skip first where duration may include setup)
|
511 |
+
if last_step_time is not None:
|
512 |
+
step_delta = now_time - last_step_time
|
513 |
+
if step_delta > 0:
|
514 |
+
step_durations.append(step_delta)
|
515 |
+
if len(step_durations) > 30: # Keep only recent 30 steps
|
516 |
+
step_durations.pop(0)
|
517 |
+
last_step_time = now_time
|
518 |
+
avg_step = sum(step_durations) / len(step_durations) if step_durations else 0.0
|
519 |
+
|
520 |
+
preview = d['denoised']
|
521 |
+
preview = vae_decode_fake(preview)
|
522 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
523 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
524 |
+
|
525 |
+
# --- Progress & ETA logic ---
|
526 |
+
# Current segment progress
|
527 |
+
current_step = d['i'] + 1
|
528 |
+
percentage = int(100.0 * current_step / steps)
|
529 |
+
|
530 |
+
# Total progress
|
531 |
+
total_steps_done = section_idx * steps + current_step
|
532 |
+
total_percentage = int(100.0 * total_steps_done / total_steps)
|
533 |
+
|
534 |
+
# ETA calculations
|
535 |
+
def fmt_eta(sec):
|
536 |
+
try:
|
537 |
+
return str(datetime.timedelta(seconds=int(sec)))
|
538 |
+
except Exception:
|
539 |
+
return "--:--"
|
540 |
+
|
541 |
+
segment_eta = (steps - current_step) * avg_step if avg_step else 0
|
542 |
+
total_eta = (total_steps - total_steps_done) * avg_step if avg_step else 0
|
543 |
+
|
544 |
+
segment_hint = f'Sampling {current_step}/{steps} ETA {fmt_eta(segment_eta)}'
|
545 |
+
total_hint = f'Total {total_steps_done}/{total_steps} ETA {fmt_eta(total_eta)}'
|
546 |
+
|
547 |
+
current_pos = (total_generated_latent_frames * 4 - 3) / 30
|
548 |
+
original_pos = total_second_length - current_pos
|
549 |
+
if current_pos < 0: current_pos = 0
|
550 |
+
if original_pos < 0: original_pos = 0
|
551 |
+
|
552 |
+
hint = segment_hint # deprecated variable kept to minimise other code changes
|
553 |
+
desc = current_generator.format_position_description(
|
554 |
+
total_generated_latent_frames,
|
555 |
+
current_pos,
|
556 |
+
original_pos,
|
557 |
+
current_prompt
|
558 |
+
)
|
559 |
+
|
560 |
+
progress_data = {
|
561 |
+
'preview': preview,
|
562 |
+
'desc': desc,
|
563 |
+
'html': make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint)
|
564 |
+
}
|
565 |
+
if job_stream is not None:
|
566 |
+
job = job_queue.get_job(job_id)
|
567 |
+
if job:
|
568 |
+
job.progress_data = progress_data
|
569 |
+
|
570 |
+
stream_to_use.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint))))
|
571 |
+
|
572 |
+
# --- Main generation loop ---
|
573 |
+
for latent_padding in latent_paddings:
|
574 |
+
is_last_section = latent_padding == 0
|
575 |
+
latent_padding_size = latent_padding * latent_window_size
|
576 |
+
|
577 |
+
if stream_to_use.input_queue.top() == 'end':
|
578 |
+
stream_to_use.output_queue.push(('end', None))
|
579 |
+
return
|
580 |
+
|
581 |
+
current_time_position = (total_generated_latent_frames * 4 - 3) / 30 # in seconds
|
582 |
+
if current_time_position < 0:
|
583 |
+
current_time_position = 0.01
|
584 |
+
|
585 |
+
# Find the appropriate prompt for this section
|
586 |
+
current_prompt = prompt_sections[0].prompt # Default to first prompt
|
587 |
+
for section in prompt_sections:
|
588 |
+
if section.start_time <= current_time_position and (section.end_time is None or current_time_position < section.end_time):
|
589 |
+
current_prompt = section.prompt
|
590 |
+
break
|
591 |
+
|
592 |
+
# PROMPT BLENDING: Find if we're in a blend window
|
593 |
+
blend_alpha = None
|
594 |
+
prev_prompt = current_prompt
|
595 |
+
next_prompt = current_prompt
|
596 |
+
|
597 |
+
# Only try to blend if we have prompt change indices and multiple sections
|
598 |
+
if prompt_change_indices and len(prompt_sections) > 1:
|
599 |
+
for i, (change_idx, prompt) in enumerate(prompt_change_indices):
|
600 |
+
if section_idx < change_idx:
|
601 |
+
prev_prompt = prompt_change_indices[i - 1][1] if i > 0 else prompt
|
602 |
+
next_prompt = prompt
|
603 |
+
blend_start = change_idx
|
604 |
+
blend_end = change_idx + blend_sections
|
605 |
+
if section_idx >= change_idx and section_idx < blend_end:
|
606 |
+
blend_alpha = (section_idx - change_idx + 1) / blend_sections
|
607 |
+
break
|
608 |
+
elif section_idx == change_idx:
|
609 |
+
# At the exact change, start blending
|
610 |
+
if i > 0:
|
611 |
+
prev_prompt = prompt_change_indices[i - 1][1]
|
612 |
+
next_prompt = prompt
|
613 |
+
blend_alpha = 1.0 / blend_sections
|
614 |
+
else:
|
615 |
+
prev_prompt = prompt
|
616 |
+
next_prompt = prompt
|
617 |
+
blend_alpha = None
|
618 |
+
break
|
619 |
+
else:
|
620 |
+
# After last change, no blending
|
621 |
+
prev_prompt = current_prompt
|
622 |
+
next_prompt = current_prompt
|
623 |
+
blend_alpha = None
|
624 |
+
|
625 |
+
# Get the encoded prompt for this section
|
626 |
+
if blend_alpha is not None and prev_prompt != next_prompt:
|
627 |
+
# Blend embeddings
|
628 |
+
prev_llama_vec, prev_llama_attention_mask, prev_clip_l_pooler = encoded_prompts[prev_prompt]
|
629 |
+
next_llama_vec, next_llama_attention_mask, next_clip_l_pooler = encoded_prompts[next_prompt]
|
630 |
+
llama_vec = (1 - blend_alpha) * prev_llama_vec + blend_alpha * next_llama_vec
|
631 |
+
llama_attention_mask = prev_llama_attention_mask # usually same
|
632 |
+
clip_l_pooler = (1 - blend_alpha) * prev_clip_l_pooler + blend_alpha * next_clip_l_pooler
|
633 |
+
print(f"Blending prompts: '{prev_prompt[:30]}...' -> '{next_prompt[:30]}...', alpha={blend_alpha:.2f}")
|
634 |
+
else:
|
635 |
+
llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[current_prompt]
|
636 |
+
|
637 |
+
original_time_position = total_second_length - current_time_position
|
638 |
+
if original_time_position < 0:
|
639 |
+
original_time_position = 0
|
640 |
+
|
641 |
+
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}, '
|
642 |
+
f'time position: {current_time_position:.2f}s (original: {original_time_position:.2f}s), '
|
643 |
+
f'using prompt: {current_prompt[:60]}...')
|
644 |
+
|
645 |
+
# Prepare indices using the generator
|
646 |
+
clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices = current_generator.prepare_indices(latent_padding_size, latent_window_size)
|
647 |
+
|
648 |
+
# Prepare clean latents using the generator
|
649 |
+
clean_latents, clean_latents_2x, clean_latents_4x = current_generator.prepare_clean_latents(start_latent, history_latents)
|
650 |
+
|
651 |
+
# Print debug info
|
652 |
+
print(f"{model_type} model section {section_idx+1}/{total_latent_sections}, latent_padding={latent_padding}")
|
653 |
+
|
654 |
+
if not high_vram:
|
655 |
+
# Unload VAE etc. before loading transformer
|
656 |
+
unload_complete_models(vae, text_encoder, text_encoder_2, image_encoder)
|
657 |
+
move_model_to_device_with_memory_preservation(current_generator.transformer, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
|
658 |
+
if selected_loras:
|
659 |
+
current_generator.move_lora_adapters_to_device(gpu)
|
660 |
+
|
661 |
+
if use_teacache:
|
662 |
+
current_generator.transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
663 |
+
else:
|
664 |
+
current_generator.transformer.initialize_teacache(enable_teacache=False)
|
665 |
+
|
666 |
+
generated_latents = sample_hunyuan(
|
667 |
+
transformer=current_generator.transformer,
|
668 |
+
sampler='unipc',
|
669 |
+
width=width,
|
670 |
+
height=height,
|
671 |
+
frames=num_frames,
|
672 |
+
real_guidance_scale=cfg,
|
673 |
+
distilled_guidance_scale=gs,
|
674 |
+
guidance_rescale=rs,
|
675 |
+
num_inference_steps=steps,
|
676 |
+
generator=rnd,
|
677 |
+
prompt_embeds=llama_vec,
|
678 |
+
prompt_embeds_mask=llama_attention_mask,
|
679 |
+
prompt_poolers=clip_l_pooler,
|
680 |
+
negative_prompt_embeds=llama_vec_n,
|
681 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
682 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
683 |
+
device=gpu,
|
684 |
+
dtype=torch.bfloat16,
|
685 |
+
image_embeddings=image_encoder_last_hidden_state,
|
686 |
+
latent_indices=latent_indices,
|
687 |
+
clean_latents=clean_latents,
|
688 |
+
clean_latent_indices=clean_latent_indices,
|
689 |
+
clean_latents_2x=clean_latents_2x,
|
690 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
691 |
+
clean_latents_4x=clean_latents_4x,
|
692 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
693 |
+
callback=callback,
|
694 |
+
)
|
695 |
+
|
696 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
697 |
+
# Update history latents using the generator
|
698 |
+
history_latents = current_generator.update_history_latents(history_latents, generated_latents)
|
699 |
+
|
700 |
+
if not high_vram:
|
701 |
+
if selected_loras:
|
702 |
+
current_generator.move_lora_adapters_to_device(cpu)
|
703 |
+
offload_model_from_device_for_memory_preservation(current_generator.transformer, target_device=gpu, preserved_memory_gb=8)
|
704 |
+
load_model_as_complete(vae, target_device=gpu)
|
705 |
+
|
706 |
+
# Get real history latents using the generator
|
707 |
+
real_history_latents = current_generator.get_real_history_latents(history_latents, total_generated_latent_frames)
|
708 |
+
|
709 |
+
if history_pixels is None:
|
710 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
711 |
+
else:
|
712 |
+
section_latent_frames = current_generator.get_section_latent_frames(latent_window_size, is_last_section)
|
713 |
+
overlapped_frames = latent_window_size * 4 - 3
|
714 |
+
|
715 |
+
# Get current pixels using the generator
|
716 |
+
current_pixels = current_generator.get_current_pixels(real_history_latents, section_latent_frames, vae)
|
717 |
+
|
718 |
+
# Update history pixels using the generator
|
719 |
+
history_pixels = current_generator.update_history_pixels(history_pixels, current_pixels, overlapped_frames)
|
720 |
+
|
721 |
+
print(f"{model_type} model section {section_idx+1}/{total_latent_sections}, history_pixels shape: {history_pixels.shape}")
|
722 |
+
|
723 |
+
if not high_vram:
|
724 |
+
unload_complete_models()
|
725 |
+
|
726 |
+
output_filename = os.path.join(output_dir, f'{job_id}_{total_generated_latent_frames}.mp4')
|
727 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=settings.get("mp4_crf"))
|
728 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
729 |
+
stream_to_use.output_queue.push(('file', output_filename))
|
730 |
+
|
731 |
+
if is_last_section:
|
732 |
+
break
|
733 |
+
|
734 |
+
section_idx += 1 # PROMPT BLENDING: increment section index
|
735 |
+
|
736 |
+
# Unload all LoRAs after generation completed
|
737 |
+
if selected_loras:
|
738 |
+
print("Unloading all LoRAs after generation completed")
|
739 |
+
current_generator.unload_loras()
|
740 |
+
import gc
|
741 |
+
gc.collect()
|
742 |
+
if torch.cuda.is_available():
|
743 |
+
torch.cuda.empty_cache()
|
744 |
+
|
745 |
+
except:
|
746 |
+
traceback.print_exc()
|
747 |
+
# Unload all LoRAs after error
|
748 |
+
if current_generator is not None and selected_loras:
|
749 |
+
print("Unloading all LoRAs after error")
|
750 |
+
current_generator.unload_loras()
|
751 |
+
import gc
|
752 |
+
gc.collect()
|
753 |
+
if torch.cuda.is_available():
|
754 |
+
torch.cuda.empty_cache()
|
755 |
+
|
756 |
+
stream_to_use.output_queue.push(('error', f"Error during generation: {traceback.format_exc()}"))
|
757 |
+
if not high_vram:
|
758 |
+
# Ensure all models including the potentially active transformer are unloaded on error
|
759 |
+
unload_complete_models(
|
760 |
+
text_encoder, text_encoder_2, image_encoder, vae,
|
761 |
+
current_generator.transformer if current_generator else None
|
762 |
+
)
|
763 |
+
|
764 |
+
if settings.get("clean_up_videos"):
|
765 |
+
try:
|
766 |
+
video_files = [
|
767 |
+
f for f in os.listdir(output_dir)
|
768 |
+
if f.startswith(f"{job_id}_") and f.endswith(".mp4")
|
769 |
+
]
|
770 |
+
print(f"Video files found for cleanup: {video_files}")
|
771 |
+
if video_files:
|
772 |
+
def get_frame_count(filename):
|
773 |
+
try:
|
774 |
+
# Handles filenames like jobid_123.mp4
|
775 |
+
return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
|
776 |
+
except Exception:
|
777 |
+
return -1
|
778 |
+
video_files_sorted = sorted(video_files, key=get_frame_count)
|
779 |
+
print(f"Sorted video files: {video_files_sorted}")
|
780 |
+
final_video = video_files_sorted[-1]
|
781 |
+
for vf in video_files_sorted[:-1]:
|
782 |
+
full_path = os.path.join(output_dir, vf)
|
783 |
+
try:
|
784 |
+
os.remove(full_path)
|
785 |
+
print(f"Deleted intermediate video: {full_path}")
|
786 |
+
except Exception as e:
|
787 |
+
print(f"Failed to delete {full_path}: {e}")
|
788 |
+
except Exception as e:
|
789 |
+
print(f"Error during video cleanup: {e}")
|
790 |
+
|
791 |
+
# Final verification of LoRA state
|
792 |
+
if current_generator and current_generator.transformer:
|
793 |
+
verify_lora_state(current_generator.transformer, "Worker end")
|
794 |
+
|
795 |
+
stream_to_use.output_queue.push(('end', None))
|
796 |
+
return
|
797 |
+
|
798 |
+
|
799 |
+
|
800 |
+
# Set the worker function for the job queue
|
801 |
+
job_queue.set_worker_function(worker)
|
802 |
+
|
803 |
+
|
804 |
+
def process(
|
805 |
+
model_type,
|
806 |
+
input_image,
|
807 |
+
prompt_text,
|
808 |
+
n_prompt,
|
809 |
+
seed,
|
810 |
+
total_second_length,
|
811 |
+
latent_window_size,
|
812 |
+
steps,
|
813 |
+
cfg,
|
814 |
+
gs,
|
815 |
+
rs,
|
816 |
+
use_teacache,
|
817 |
+
blend_sections,
|
818 |
+
latent_type,
|
819 |
+
clean_up_videos,
|
820 |
+
selected_loras,
|
821 |
+
resolutionW,
|
822 |
+
resolutionH,
|
823 |
+
lora_loaded_names,
|
824 |
+
*lora_values
|
825 |
+
):
|
826 |
+
|
827 |
+
# Create a blank black image if no
|
828 |
+
# Create a default image based on the selected latent_type
|
829 |
+
has_input_image = True
|
830 |
+
if input_image is None:
|
831 |
+
has_input_image = False
|
832 |
+
default_height, default_width = resolutionH, resolutionW
|
833 |
+
if latent_type == "White":
|
834 |
+
# Create a white image
|
835 |
+
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
|
836 |
+
print("No input image provided. Using a blank white image.")
|
837 |
+
|
838 |
+
elif latent_type == "Noise":
|
839 |
+
# Create a noise image
|
840 |
+
input_image = np.random.randint(0, 256, (default_height, default_width, 3), dtype=np.uint8)
|
841 |
+
print("No input image provided. Using a random noise image.")
|
842 |
+
|
843 |
+
elif latent_type == "Green Screen":
|
844 |
+
# Create a green screen image with standard chroma key green (0, 177, 64)
|
845 |
+
input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
|
846 |
+
input_image[:, :, 1] = 177 # Green channel
|
847 |
+
input_image[:, :, 2] = 64 # Blue channel
|
848 |
+
# Red channel remains 0
|
849 |
+
print("No input image provided. Using a standard chroma key green screen.")
|
850 |
+
|
851 |
+
else: # Default to "Black" or any other value
|
852 |
+
# Create a black image
|
853 |
+
input_image = np.zeros((default_height, default_width, 3), dtype=np.uint8)
|
854 |
+
print(f"No input image provided. Using a blank black image (latent_type: {latent_type}).")
|
855 |
+
|
856 |
+
|
857 |
+
# Create job parameters
|
858 |
+
job_params = {
|
859 |
+
'model_type': model_type,
|
860 |
+
'input_image': input_image.copy(), # Make a copy to avoid reference issues
|
861 |
+
'prompt_text': prompt_text,
|
862 |
+
'n_prompt': n_prompt,
|
863 |
+
'seed': seed,
|
864 |
+
'total_second_length': total_second_length,
|
865 |
+
'latent_window_size': latent_window_size,
|
866 |
+
'latent_type': latent_type,
|
867 |
+
'steps': steps,
|
868 |
+
'cfg': cfg,
|
869 |
+
'gs': gs,
|
870 |
+
'rs': rs,
|
871 |
+
'blend_sections': blend_sections,
|
872 |
+
'use_teacache': use_teacache,
|
873 |
+
'selected_loras': selected_loras,
|
874 |
+
'has_input_image': has_input_image,
|
875 |
+
'output_dir': settings.get("output_dir"),
|
876 |
+
'metadata_dir': settings.get("metadata_dir"),
|
877 |
+
'resolutionW': resolutionW, # Add resolution parameter
|
878 |
+
'resolutionH': resolutionH,
|
879 |
+
'lora_loaded_names': lora_loaded_names
|
880 |
+
}
|
881 |
+
|
882 |
+
# Add LoRA values if provided - extract them from the tuple
|
883 |
+
if lora_values:
|
884 |
+
# Convert tuple to list
|
885 |
+
lora_values_list = list(lora_values)
|
886 |
+
job_params['lora_values'] = lora_values_list
|
887 |
+
|
888 |
+
# Add job to queue
|
889 |
+
job_id = job_queue.add_job(job_params)
|
890 |
+
|
891 |
+
# Set the generation_type attribute on the job object directly
|
892 |
+
job = job_queue.get_job(job_id)
|
893 |
+
if job:
|
894 |
+
job.generation_type = model_type # Set generation_type to model_type for display in queue
|
895 |
+
print(f"Added job {job_id} to queue")
|
896 |
+
|
897 |
+
queue_status = update_queue_status()
|
898 |
+
# Return immediately after adding to queue
|
899 |
+
return None, job_id, None, '', f'Job added to queue. Job ID: {job_id}', gr.update(interactive=True), gr.update(interactive=True)
|
900 |
+
|
901 |
+
|
902 |
+
|
903 |
+
def end_process():
|
904 |
+
"""Cancel the current running job and update the queue status"""
|
905 |
+
print("Cancelling current job")
|
906 |
+
with job_queue.lock:
|
907 |
+
if job_queue.current_job:
|
908 |
+
job_id = job_queue.current_job.id
|
909 |
+
print(f"Cancelling job {job_id}")
|
910 |
+
|
911 |
+
# Send the end signal to the job's stream
|
912 |
+
if job_queue.current_job.stream:
|
913 |
+
job_queue.current_job.stream.input_queue.push('end')
|
914 |
+
|
915 |
+
# Mark the job as cancelled
|
916 |
+
job_queue.current_job.status = JobStatus.CANCELLED
|
917 |
+
job_queue.current_job.completed_at = time.time() # Set completion time
|
918 |
+
|
919 |
+
# Force an update to the queue status
|
920 |
+
return update_queue_status()
|
921 |
+
|
922 |
+
|
923 |
+
def update_queue_status():
|
924 |
+
"""Update queue status and refresh job positions"""
|
925 |
+
jobs = job_queue.get_all_jobs()
|
926 |
+
for job in jobs:
|
927 |
+
if job.status == JobStatus.PENDING:
|
928 |
+
job.queue_position = job_queue.get_queue_position(job.id)
|
929 |
+
|
930 |
+
# Make sure to update current running job info
|
931 |
+
if job_queue.current_job:
|
932 |
+
# Make sure the running job is showing status = RUNNING
|
933 |
+
job_queue.current_job.status = JobStatus.RUNNING
|
934 |
+
|
935 |
+
return format_queue_status(jobs)
|
936 |
+
|
937 |
+
|
938 |
+
def monitor_job(job_id):
|
939 |
+
"""
|
940 |
+
Monitor a specific job and update the UI with the latest video segment as soon as it's available.
|
941 |
+
"""
|
942 |
+
if not job_id:
|
943 |
+
yield None, None, None, '', 'No job ID provided', gr.update(interactive=True), gr.update(interactive=True)
|
944 |
+
return
|
945 |
+
|
946 |
+
last_video = None # Track the last video file shown
|
947 |
+
|
948 |
+
while True:
|
949 |
+
job = job_queue.get_job(job_id)
|
950 |
+
if not job:
|
951 |
+
yield None, job_id, None, '', 'Job not found', gr.update(interactive=True), gr.update(interactive=True)
|
952 |
+
return
|
953 |
+
|
954 |
+
# If a new video file is available, yield it immediately
|
955 |
+
if job.result and job.result != last_video:
|
956 |
+
last_video = job.result
|
957 |
+
# You can also update preview/progress here if desired
|
958 |
+
yield last_video, job_id, gr.update(visible=True), '', '', gr.update(interactive=True), gr.update(interactive=True)
|
959 |
+
|
960 |
+
# Handle job status and progress
|
961 |
+
if job.status == JobStatus.PENDING:
|
962 |
+
position = job_queue.get_queue_position(job_id)
|
963 |
+
yield last_video, job_id, gr.update(visible=True), '', f'Waiting in queue. Position: {position}', gr.update(interactive=True), gr.update(interactive=True)
|
964 |
+
|
965 |
+
elif job.status == JobStatus.RUNNING:
|
966 |
+
if job.progress_data and 'preview' in job.progress_data:
|
967 |
+
preview = job.progress_data.get('preview')
|
968 |
+
desc = job.progress_data.get('desc', '')
|
969 |
+
html = job.progress_data.get('html', '')
|
970 |
+
yield last_video, job_id, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=True), gr.update(interactive=True)
|
971 |
+
else:
|
972 |
+
yield last_video, job_id, gr.update(visible=True), '', 'Processing...', gr.update(interactive=True), gr.update(interactive=True)
|
973 |
+
|
974 |
+
elif job.status == JobStatus.COMPLETED:
|
975 |
+
# Show the final video
|
976 |
+
yield last_video, job_id, gr.update(visible=True), '', '', gr.update(interactive=True), gr.update(interactive=True)
|
977 |
+
break
|
978 |
+
|
979 |
+
elif job.status == JobStatus.FAILED:
|
980 |
+
yield last_video, job_id, gr.update(visible=True), '', f'Error: {job.error}', gr.update(interactive=True), gr.update(interactive=True)
|
981 |
+
break
|
982 |
+
|
983 |
+
elif job.status == JobStatus.CANCELLED:
|
984 |
+
yield last_video, job_id, gr.update(visible=True), '', 'Job cancelled', gr.update(interactive=True), gr.update(interactive=True)
|
985 |
+
break
|
986 |
+
|
987 |
+
# Wait a bit before checking again
|
988 |
+
time.sleep(0.5)
|
989 |
+
|
990 |
+
|
991 |
+
# Set Gradio temporary directory from settings
|
992 |
+
os.environ["GRADIO_TEMP_DIR"] = settings.get("gradio_temp_dir")
|
993 |
+
|
994 |
+
# Create the interface
|
995 |
+
interface = create_interface(
|
996 |
+
process_fn=process,
|
997 |
+
monitor_fn=monitor_job,
|
998 |
+
end_process_fn=end_process,
|
999 |
+
update_queue_status_fn=update_queue_status,
|
1000 |
+
load_lora_file_fn=load_lora_file,
|
1001 |
+
job_queue=job_queue,
|
1002 |
+
settings=settings,
|
1003 |
+
lora_names=lora_names # Explicitly pass the found LoRA names
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
# Launch the interface
|
1007 |
+
interface.launch(
|
1008 |
+
server_name=args.server,
|
1009 |
+
server_port=args.port,
|
1010 |
+
share=args.share,
|
1011 |
+
inbrowser=args.inbrowser
|
1012 |
+
)
|