|
""" |
|
This files contains your custom actions which can be used |
|
to run custom Python code. |
|
""" |
|
from typing import Any, Text, Dict, List |
|
import json |
|
import requests |
|
import sqlite3 |
|
import textwrap |
|
|
|
|
|
from rasa_sdk import Action, Tracker |
|
from rasa_sdk.events import UserUtteranceReverted |
|
from rasa_sdk.executor import CollectingDispatcher |
|
|
|
|
|
class ActionDefaultFallback(Action): |
|
"""Executes the fallback action and goes back to the previous state |
|
of the dialogue""" |
|
|
|
customer_id = "1835841754" |
|
corpus_id = 8 |
|
header = { |
|
"customer-id": customer_id, |
|
"x-api-key": "zqt_bWy42jRbsk1Quy9kWZ7grHv_lyxwNBWEklJKRA" |
|
} |
|
con = None |
|
|
|
def name(self) -> Text: |
|
con = sqlite3.connect("./reviews.db") |
|
self.cur = con.cursor() |
|
return "zir_action_fallback" |
|
|
|
async def run( |
|
self, |
|
dispatcher: CollectingDispatcher, |
|
tracker: Tracker, |
|
domain: Dict[Text, Any], |
|
) -> List[Dict[Text, Any]]: |
|
|
|
number_results = 3 |
|
data_dict = { |
|
"query": [ |
|
{ |
|
"query": tracker.latest_message["text"], |
|
"num_results": number_results, |
|
"corpus_key": [ |
|
{ |
|
"customer_id": self.customer_id, |
|
"corpus_id": self.corpus_id |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
payload = json.dumps(data_dict) |
|
response = requests.post(f"https://h.serving.zir-ai.io:443/v1/query", |
|
data=payload, |
|
verify=True, |
|
headers=self.header, |
|
timeout=10) |
|
parsed = json.loads(response.text) |
|
first_resp = parsed["responseSet"][0]["response"][0] |
|
last_resp = parsed["responseSet"][0]["response"][-1] |
|
textQuery = [] |
|
print(last_resp["score"]) |
|
print(first_resp["score"]) |
|
if last_resp["score"] < 0.3 or first_resp["score"] < 0.3: |
|
print(f"Scores; {last_resp['score']} and {first_resp['score']}") |
|
textQuery.append( |
|
f"Scores; {last_resp['score']} and {first_resp['score']} I'm sorry, I don't have any information about that.") |
|
else: |
|
textQuery = print_responses(parsed["responseSet"][0], self.cur) |
|
textQuery.insert(0, "\n") |
|
textQuery.insert( |
|
0, "Here's what other customers had to say about that:") |
|
textQuery = "\n".join(textQuery) |
|
dispatcher.utter_message(text=textQuery) |
|
|
|
|
|
return [UserUtteranceReverted()] |
|
|
|
|
|
def print_responses(response_set, sqlite_cursor): |
|
"""Print responses to the console.""" |
|
text_list = [] |
|
for result in response_set["response"]: |
|
doc = response_set["document"][result["documentIndex"]] |
|
query = f""" |
|
SELECT title, date, hotel, review FROM reviews |
|
WHERE doc_id="{doc["id"]}" |
|
""" |
|
for row in sqlite_cursor.execute(query): |
|
title, date, hotel, fulltext = row |
|
text_list.append("**" + title + "**") |
|
if is_title(result): |
|
text_list.append(f"{head(fulltext)}") |
|
else: |
|
t = result["text"] |
|
text_list.append(f"{highlight(fulltext, t)}") |
|
text_list.append( |
|
"*" + f" > \"Atlantis, Dubai\" reviewed on {date}" + " *") |
|
text_list.append("\n") |
|
break |
|
return text_list |
|
|
|
|
|
def highlight(fulltext, snippet): |
|
"""Return a result snippet with context, suitable for terminal display.""" |
|
if snippet in fulltext: |
|
start = fulltext.index(snippet) |
|
end = start + len(snippet) |
|
|
|
lines = textwrap.wrap(fulltext) |
|
start_line = 0 |
|
end_line = len(lines) |
|
pos = 0 |
|
|
|
|
|
|
|
for x, line in enumerate(lines): |
|
next_pos = pos + len(line) |
|
|
|
color_start = pos <= start < next_pos |
|
color_end = pos <= end < next_pos |
|
|
|
if color_start and color_end: |
|
start_line = end_line = x |
|
ips = start - pos - x |
|
ipe = end - pos - x |
|
lines[x] = line[:ips] + "**" + line[ips:ipe] + \ |
|
"**" + line[ipe:] |
|
elif color_start: |
|
start_line = x |
|
ip = start - pos - x |
|
lines[x] = line[:ip] + "**" + line[ip:] |
|
elif color_end: |
|
end_line = x |
|
ip = end - pos - x |
|
lines[x] = line[:ip] + "**" + line[ip:] |
|
|
|
pos = next_pos |
|
|
|
|
|
if start_line > 0: |
|
start_line -= 1 |
|
end_line += 2 |
|
return prettify('\n'.join(lines[start_line:end_line])) |
|
return prettify(snippet) |
|
|
|
|
|
def head(fulltext): |
|
"""Returns the first three lines of the review.""" |
|
lines = textwrap.wrap(fulltext) |
|
return prettify('\n'.join(lines[0:3]) + '...') |
|
|
|
|
|
def is_title(result): |
|
"""Returns true if the result is a title match.""" |
|
for metadatum in result["metadata"]: |
|
if metadatum["name"] == "is_title": |
|
return metadatum["value"] == "true" |
|
return False |
|
|
|
|
|
def prettify(text): |
|
"""Clean up the text to make it more suitable for display.""" |
|
return text.replace("&", "&").replace(""", "\"") |
|
|