Spaces:
Sleeping
Sleeping
Rahul Bhoyar
commited on
Commit
•
91dad81
0
Parent(s):
Initial Commit
Browse files- .github/workflows/sync_with_hf.yml +18 -0
- .gitignore +1 -0
- app.py +53 -0
- requirements.txt +9 -0
.github/workflows/sync_with_hf.yml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [main]
|
5 |
+
workflow_dispatch:
|
6 |
+
|
7 |
+
jobs:
|
8 |
+
sync-to-hub:
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
steps:
|
11 |
+
- uses: actions/checkout@v3
|
12 |
+
with:
|
13 |
+
fetch-depth: 0
|
14 |
+
lfs: true
|
15 |
+
- name: Push to Hugging face hub
|
16 |
+
env:
|
17 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
18 |
+
run: git push --force https://rahul-bhoyar-1995:$HF_TOKEN@huggingface.co/spaces/rahul-bhoyar-1995/Webpage-Querier main
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv/
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from llama_index import VectorStoreIndex, download_loader, ServiceContext
|
4 |
+
from llama_index.embeddings import HuggingFaceEmbedding
|
5 |
+
from llama_index.llms import Gemini, HuggingFaceInferenceAPI, OpenAI
|
6 |
+
|
7 |
+
# Create Streamlit web app
|
8 |
+
def main():
|
9 |
+
st.title("Webpage Querier by Rahul Bhoyar")
|
10 |
+
# Sidebar for customizations
|
11 |
+
with st.sidebar:
|
12 |
+
st.subheader("Customize Settings")
|
13 |
+
loader = download_loader("BeautifulSoupWebReader")()
|
14 |
+
hf_token = st.text_input("Enter your Hugging Face token:")
|
15 |
+
llm = HuggingFaceInferenceAPI(model_name="HuggingFaceH4/zephyr-7b-alpha", token=hf_token)
|
16 |
+
|
17 |
+
# Main content area
|
18 |
+
st.markdown("Query your Web page data with using this chatbot")
|
19 |
+
|
20 |
+
# User input: Web page link
|
21 |
+
url = st.text_input("Enter the URL of the web page:")
|
22 |
+
|
23 |
+
# Create Service Context
|
24 |
+
embed_model_uae = HuggingFaceEmbedding(model_name="WhereIsAI/UAE-Large-V1")
|
25 |
+
service_context = ServiceContext.from_defaults(llm=llm, chunk_size=800, chunk_overlap=20, embed_model=embed_model_uae)
|
26 |
+
|
27 |
+
# Load documents
|
28 |
+
if url:
|
29 |
+
documents = loader.load_data(urls=[url])
|
30 |
+
st.success("Documents loaded successfully!")
|
31 |
+
with st.spinner('Creating Vector Embeddings...'):
|
32 |
+
# Create Vector Store Index
|
33 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
|
34 |
+
|
35 |
+
# Persist Storage Context
|
36 |
+
index.storage_context.persist()
|
37 |
+
|
38 |
+
# Create Query Engine
|
39 |
+
query_engine = index.as_query_engine()
|
40 |
+
|
41 |
+
# User input: Query
|
42 |
+
query = st.text_input("Ask a question:")
|
43 |
+
if query:
|
44 |
+
# Run Query
|
45 |
+
response = query_engine.query(query)
|
46 |
+
|
47 |
+
# Display Result
|
48 |
+
st.markdown(f"**Response:** {response}")
|
49 |
+
else:
|
50 |
+
st.warning("Please enter a valid URL.")
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama-index
|
2 |
+
streamlit
|
3 |
+
transformers[torch]
|
4 |
+
huggingface_hub[inference]
|
5 |
+
transformers
|
6 |
+
beautifulsoup4
|
7 |
+
unstructured
|
8 |
+
watchdog
|
9 |
+
transformers
|