Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +184 -4
- install.sh +2 -0
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,4 +1,184 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask
|
2 |
+
from flask_restx import Api, Resource, fields
|
3 |
+
from werkzeug.datastructures import FileStorage
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import OneHotEncoder
|
8 |
+
from sklearn.compose import ColumnTransformer
|
9 |
+
from sklearn.pipeline import Pipeline
|
10 |
+
from sklearn.impute import SimpleImputer
|
11 |
+
from sklearn.linear_model import LinearRegression
|
12 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
13 |
+
import joblib
|
14 |
+
import streamlit as st
|
15 |
+
import pandas as pd
|
16 |
+
import requests
|
17 |
+
import threading
|
18 |
+
import json
|
19 |
+
|
20 |
+
app = Flask(__name__)
|
21 |
+
api = Api(app, version='1.0', title='Car Depreciation Model API',
|
22 |
+
description='API for creating and testing car depreciation models')
|
23 |
+
|
24 |
+
model_ns = api.namespace('model', description='Model operations')
|
25 |
+
predict_ns = api.namespace('predict', description='Prediction operations')
|
26 |
+
|
27 |
+
# Define the expected input for file upload
|
28 |
+
upload_parser = api.parser()
|
29 |
+
upload_parser.add_argument('file', location='files', type=FileStorage, required=True)
|
30 |
+
|
31 |
+
# Define the expected input for prediction
|
32 |
+
input_model = api.model('PredictionInput', {
|
33 |
+
'Car_Model': fields.String(required=True, description='Car model'),
|
34 |
+
'Car_Year': fields.Integer(required=True, description='Year of the car'),
|
35 |
+
'Assessment_Year': fields.Integer(required=True, description='Assessment year'),
|
36 |
+
'Starting_Asset_Value': fields.Float(required=True, description='Starting asset value'),
|
37 |
+
'Book_Residual_Value': fields.Float(required=True, description='Book residual value'),
|
38 |
+
'Market_Value': fields.Float(required=True, description='Market value')
|
39 |
+
})
|
40 |
+
|
41 |
+
# Global variable to store the model
|
42 |
+
global_model = None
|
43 |
+
|
44 |
+
@model_ns.route('/create')
|
45 |
+
@api.expect(upload_parser)
|
46 |
+
class ModelCreation(Resource):
|
47 |
+
@api.doc(description='Create a new model from CSV data')
|
48 |
+
@api.response(200, 'Model created successfully')
|
49 |
+
@api.response(400, 'Invalid input')
|
50 |
+
def post(self):
|
51 |
+
global global_model
|
52 |
+
args = upload_parser.parse_args()
|
53 |
+
uploaded_file = args['file']
|
54 |
+
|
55 |
+
if uploaded_file and uploaded_file.filename.endswith('.csv'):
|
56 |
+
# Read the CSV file
|
57 |
+
data = pd.read_csv(uploaded_file)
|
58 |
+
|
59 |
+
# Prepare features and target
|
60 |
+
X = data.drop('Depreciation_Percent', axis=1)
|
61 |
+
y = data['Depreciation_Percent']
|
62 |
+
|
63 |
+
# Split the data into training and testing sets
|
64 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
65 |
+
|
66 |
+
# Create preprocessing steps
|
67 |
+
numeric_features = ['Car_Year', 'Assessment_Year', 'Starting_Asset_Value', 'Book_Residual_Value', 'Market_Value']
|
68 |
+
categorical_features = ['Car_Model']
|
69 |
+
|
70 |
+
numeric_transformer = SimpleImputer(strategy='median')
|
71 |
+
categorical_transformer = Pipeline(steps=[
|
72 |
+
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
|
73 |
+
('onehot', OneHotEncoder(handle_unknown='ignore'))
|
74 |
+
])
|
75 |
+
|
76 |
+
preprocessor = ColumnTransformer(
|
77 |
+
transformers=[
|
78 |
+
('num', numeric_transformer, numeric_features),
|
79 |
+
('cat', categorical_transformer, categorical_features)
|
80 |
+
])
|
81 |
+
|
82 |
+
# Create a pipeline with preprocessor and model
|
83 |
+
model = Pipeline(steps=[('preprocessor', preprocessor),
|
84 |
+
('regressor', LinearRegression())])
|
85 |
+
|
86 |
+
# Fit the model
|
87 |
+
model.fit(X_train, y_train)
|
88 |
+
|
89 |
+
# Make predictions on the test set
|
90 |
+
y_pred = model.predict(X_test)
|
91 |
+
|
92 |
+
# Evaluate the model
|
93 |
+
mse = mean_squared_error(y_test, y_pred)
|
94 |
+
r2 = r2_score(y_test, y_pred)
|
95 |
+
|
96 |
+
# Save the model
|
97 |
+
joblib.dump(model, 'output/car_depreciation_model.joblib')
|
98 |
+
global_model = model
|
99 |
+
|
100 |
+
return {
|
101 |
+
'message': 'Model created and saved successfully',
|
102 |
+
'mse': float(mse),
|
103 |
+
'r2': float(r2)
|
104 |
+
}, 200
|
105 |
+
|
106 |
+
return {'error': 'Invalid file format'}, 400
|
107 |
+
|
108 |
+
@predict_ns.route('/')
|
109 |
+
class Prediction(Resource):
|
110 |
+
@api.expect(input_model)
|
111 |
+
@api.doc(description='Predict car depreciation')
|
112 |
+
@api.response(200, 'Successful prediction')
|
113 |
+
@api.response(400, 'Invalid input')
|
114 |
+
@api.response(404, 'Model not found')
|
115 |
+
def post(self):
|
116 |
+
global global_model
|
117 |
+
try:
|
118 |
+
if global_model is None:
|
119 |
+
try:
|
120 |
+
global_model = joblib.load('output/car_depreciation_model.joblib')
|
121 |
+
except FileNotFoundError:
|
122 |
+
return {'error': 'Model not found. Please create a model first.'}, 404
|
123 |
+
|
124 |
+
# Get JSON data from the request
|
125 |
+
data = api.payload
|
126 |
+
|
127 |
+
# Convert JSON to DataFrame
|
128 |
+
new_data_df = pd.DataFrame([data])
|
129 |
+
|
130 |
+
# Make prediction
|
131 |
+
prediction = global_model.predict(new_data_df)
|
132 |
+
|
133 |
+
return {
|
134 |
+
'predicted_depreciation': float(prediction[0])
|
135 |
+
}, 200
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
return {'error': str(e)}, 400
|
139 |
+
|
140 |
+
|
141 |
+
API_URL = "http://localhost:5000"
|
142 |
+
st.title('Car Depreciation Predictor')
|
143 |
+
|
144 |
+
# Input form for prediction
|
145 |
+
st.header('Predict Depreciation')
|
146 |
+
car_model = st.text_input('Car Model',value="Honda Civic")
|
147 |
+
car_year = st.number_input('Car Year', value=2022)
|
148 |
+
assessment_year = st.number_input('Assessment Year', min_value=1, max_value=5, value=1)
|
149 |
+
starting_asset_value = st.number_input('Starting Asset Value', min_value=0, value=20000)
|
150 |
+
book_residual_value = st.number_input('Book Residual Value', min_value=0, value=18000)
|
151 |
+
market_value = st.number_input('Market Value', min_value=0, value=19000)
|
152 |
+
|
153 |
+
if st.button('Predict'):
|
154 |
+
input_data = {
|
155 |
+
'Car_Model': car_model,
|
156 |
+
'Car_Year': int(car_year),
|
157 |
+
'Assessment_Year': int(assessment_year),
|
158 |
+
'Starting_Asset_Value': float(starting_asset_value),
|
159 |
+
'Book_Residual_Value': float(book_residual_value),
|
160 |
+
'Market_Value': float(market_value)
|
161 |
+
}
|
162 |
+
|
163 |
+
response = requests.post(f'{API_URL}/predict/', json=input_data)
|
164 |
+
if response.status_code == 200:
|
165 |
+
prediction = response.json()['predicted_depreciation']
|
166 |
+
st.success(f'Predicted Depreciation: {prediction:.2f}%')
|
167 |
+
elif response.status_code == 404:
|
168 |
+
st.error('Model not found. Please create a model first.')
|
169 |
+
else:
|
170 |
+
st.error(f'Error making prediction: {response.json().get("error", "Unknown error")}')
|
171 |
+
|
172 |
+
if __name__ == '__main__':
|
173 |
+
try:
|
174 |
+
# Start Flask in a separate thread
|
175 |
+
threading.Thread(target=lambda: app.run(debug=False, use_reloader=False)).start()
|
176 |
+
|
177 |
+
# Run Streamlit
|
178 |
+
import streamlit.web.cli as stcli
|
179 |
+
import sys
|
180 |
+
|
181 |
+
sys.argv = ["streamlit", "run", __file__]
|
182 |
+
sys.exit(stcli.main())
|
183 |
+
except:
|
184 |
+
print("An exception occurred")
|
install.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip install -r requirements.txt
|
2 |
+
python app.py
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-restx
|
3 |
+
Werkzeug
|
4 |
+
scikit-learn
|
5 |
+
pandas
|
6 |
+
numpy
|
7 |
+
joblib
|