Spaces:
Build error
Build error
Initial Draft
Browse files
app.py
CHANGED
@@ -1,36 +1,25 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import re
|
3 |
-
import streamlit as st
|
4 |
-
import google.generativeai as genai
|
5 |
-
from dotenv import load_dotenv
|
6 |
|
7 |
-
from langchain_community.document_loaders import TextLoader
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
from langchain.docstore.document import Document
|
10 |
-
from langchain import
|
11 |
-
from
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
load_dotenv()
|
15 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
16 |
|
17 |
-
# Display user Error, Warning or Success Message
|
18 |
-
def fn_display_user_messages(lv_text, lv_type, mv_processing_message):
|
19 |
-
"""Display user Info, Error, Warning or Success Message"""
|
20 |
-
|
21 |
-
if lv_type == "Success":
|
22 |
-
with mv_processing_message.container():
|
23 |
-
st.success(lv_text)
|
24 |
-
elif lv_type == "Error":
|
25 |
-
with mv_processing_message.container():
|
26 |
-
st.error(lv_text)
|
27 |
-
elif lv_type == "Warning":
|
28 |
-
with mv_processing_message.container():
|
29 |
-
st.warning(lv_text)
|
30 |
-
else:
|
31 |
-
with mv_processing_message.container():
|
32 |
-
st.info(lv_text)
|
33 |
-
|
34 |
# Upload pdf file into 'pdf-data' folder if it does not exist
|
35 |
def fn_upload_pdf(mv_pdf_input_file, mv_processing_message):
|
36 |
"""Upload pdf file into 'pdf-data' folder if it does not exist"""
|
@@ -43,8 +32,8 @@ def fn_upload_pdf(mv_pdf_input_file, mv_processing_message):
|
|
43 |
lv_temp_file_path = os.path.join("pdf-data",lv_file_name)
|
44 |
|
45 |
if os.path.exists(lv_temp_file_path):
|
46 |
-
print("
|
47 |
-
fn_display_user_messages("
|
48 |
else:
|
49 |
with open(lv_temp_file_path,"wb") as lv_file:
|
50 |
lv_file.write(mv_pdf_input_file.getbuffer())
|
@@ -52,77 +41,137 @@ def fn_upload_pdf(mv_pdf_input_file, mv_processing_message):
|
|
52 |
print("Step1: PDF uploaded successfully at -> " + lv_temp_file_path)
|
53 |
fn_display_user_messages("Step1: PDF uploaded successfully at -> " + lv_temp_file_path, "Info", mv_processing_message)
|
54 |
|
55 |
-
#
|
56 |
-
def
|
57 |
-
"""
|
58 |
-
|
59 |
-
lv_temp_pdf_file_path = os.path.join("pdf-data",mv_pdf_input_file.name)
|
60 |
|
61 |
-
|
62 |
-
lv_pdf_loader = PyPDFLoader(lv_temp_pdf_file_path)
|
63 |
-
lv_pdf_content = lv_pdf_loader.load()
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
pattern2 = r"(?<!\n\s)\n(?!\s\n)" # Match line breaks not surrounded by whitespace
|
68 |
-
pattern3 = r"\n\s*\n" # Match multiple line breaks with optional whitespace
|
69 |
-
|
70 |
-
lv_pdf_formatted_content = []
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
lv_pdf_page_content = re.sub("\n", " ", lv_pdf_page_content)
|
78 |
-
|
79 |
-
lv_pdf_formatted_content.append(
|
80 |
-
Document( page_content= lv_pdf_page_content,
|
81 |
-
metadata= lv_page.metadata
|
82 |
-
)
|
83 |
-
)
|
84 |
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
def fn_process_pf_data(mv_pdf_input_file, mv_processing_message):
|
94 |
-
"""Load PDF data as Text File"""
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
print("Step2: Processed file details exists")
|
105 |
-
fn_display_user_messages("Step2: Processed file details exists", "Warning", mv_processing_message)
|
106 |
-
else:
|
107 |
-
lv_pdf_formatted_content = fn_extract_pdf_data(mv_pdf_input_file, mv_processing_message)
|
108 |
-
lv_text_data = ""
|
109 |
-
|
110 |
-
for lv_page in lv_pdf_formatted_content:
|
111 |
-
# print(lv_page.page_content)
|
112 |
-
lv_text_data = lv_text_data + lv_page.page_content
|
113 |
-
|
114 |
-
# print(lv_text_data)
|
115 |
-
f = open(lv_temp_file_path, "w")
|
116 |
-
f.write(lv_text_data)
|
117 |
-
f.close()
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
"""Returns QA Response"""
|
122 |
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
lv_template = """Instruction:
|
127 |
You are an AI assistant for answering questions about the provided context.
|
128 |
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
|
@@ -132,96 +181,194 @@ def fn_generate_QnA_response(mv_user_question, mv_pdf_input_file, mv_processing_
|
|
132 |
=======
|
133 |
Question: {question}
|
134 |
Output:\n"""
|
135 |
-
|
136 |
lv_qa_prompt = PromptTemplate(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
lv_qa_formatted_prompt = lv_qa_prompt.format(
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
lv_llm_response = lv_model
|
|
|
160 |
|
161 |
print("Step5: LLM response generated")
|
162 |
fn_display_user_messages("Step5: LLM response generated","Info", mv_processing_message)
|
163 |
|
164 |
return lv_llm_response
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
def main():
|
|
|
169 |
# -- Streamlit Settings
|
170 |
-
st.set_page_config(
|
171 |
-
|
172 |
-
|
173 |
st.text("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
st.text("")
|
175 |
|
|
|
|
|
|
|
|
|
176 |
# -- Display Processing Details
|
177 |
-
mv_processing_message = st.empty()
|
178 |
st.text("")
|
|
|
|
|
179 |
st.text("")
|
180 |
|
181 |
-
# --
|
182 |
-
if
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
mv_pdf_input_file = st.file_uploader("Choose a UM PDF file:", type=["pdf"])
|
188 |
st.text("")
|
|
|
189 |
st.text("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
st.session_state["messages"] = []
|
203 |
-
|
204 |
-
# -- Creating Chat Details
|
205 |
-
mv_user_question = st.chat_input("Pass your input here")
|
206 |
-
|
207 |
-
# -- Recording Chat Input and Generating Response
|
208 |
-
if mv_user_question:
|
209 |
-
# -- Saving User Input
|
210 |
-
st.session_state.messages.append({"role": "user", "content": mv_user_question})
|
211 |
-
|
212 |
-
# -- Generating LLM Response
|
213 |
-
lv_response = fn_generate_QnA_response(mv_user_question, mv_pdf_input_file, mv_processing_message)
|
214 |
-
|
215 |
-
# -- Saving LLM Response
|
216 |
-
st.session_state.messages.append(
|
217 |
-
{"role": "agent", "content": lv_response}
|
218 |
-
)
|
219 |
-
|
220 |
-
# -- Display chat messages from history
|
221 |
-
for message in st.session_state.messages:
|
222 |
-
with st.chat_message(message["role"]):
|
223 |
-
st.markdown(message["content"])
|
224 |
-
|
225 |
-
# Loading Main
|
226 |
-
if __name__ == "__main__":
|
227 |
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
import os
|
3 |
+
import requests
|
4 |
import re
|
|
|
|
|
|
|
5 |
|
|
|
6 |
from langchain_community.document_loaders import PyPDFLoader
|
7 |
from langchain.docstore.document import Document
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.vectorstores.faiss import FAISS
|
11 |
|
12 |
+
from langchain.prompts.prompt import PromptTemplate
|
13 |
+
from langchain_community.llms import LlamaCpp
|
14 |
+
from langchain.chains import RetrievalQA
|
15 |
+
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
import google.generativeai as genai
|
18 |
+
|
19 |
+
# Loading Google Gemini
|
20 |
load_dotenv()
|
21 |
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Upload pdf file into 'pdf-data' folder if it does not exist
|
24 |
def fn_upload_pdf(mv_pdf_input_file, mv_processing_message):
|
25 |
"""Upload pdf file into 'pdf-data' folder if it does not exist"""
|
|
|
32 |
lv_temp_file_path = os.path.join("pdf-data",lv_file_name)
|
33 |
|
34 |
if os.path.exists(lv_temp_file_path):
|
35 |
+
print("File already available")
|
36 |
+
fn_display_user_messages("File already available","Warning", mv_processing_message)
|
37 |
else:
|
38 |
with open(lv_temp_file_path,"wb") as lv_file:
|
39 |
lv_file.write(mv_pdf_input_file.getbuffer())
|
|
|
41 |
print("Step1: PDF uploaded successfully at -> " + lv_temp_file_path)
|
42 |
fn_display_user_messages("Step1: PDF uploaded successfully at -> " + lv_temp_file_path, "Info", mv_processing_message)
|
43 |
|
44 |
+
# Create Vector DB of uploaded PDF
|
45 |
+
def fn_create_vector_db(mv_pdf_input_file, mv_processing_message):
|
46 |
+
"""Create Vector DB of uploaded PDF"""
|
|
|
|
|
47 |
|
48 |
+
lv_file_name = mv_pdf_input_file.name[:-4] + ".vectorstore"
|
|
|
|
|
49 |
|
50 |
+
if not os.path.exists(os.path.join("vectordb","fiaas")):
|
51 |
+
os.makedirs(os.path.join("vectordb","fiaas"))
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
lv_temp_file_path = os.path.join(os.path.join("vectordb","fiaas"),lv_file_name)
|
54 |
+
lv_embeddings = HuggingFaceEmbeddings(
|
55 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
56 |
+
model_kwargs={'device': 'cpu'}
|
57 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
if os.path.exists(lv_temp_file_path):
|
60 |
+
print("VectorDB already available for uploaded file")
|
61 |
+
fn_display_user_messages("VectorDB already available for uploaded file","Warning", mv_processing_message)
|
62 |
|
63 |
+
lv_vector_store = FAISS.load_local(lv_temp_file_path, lv_embeddings,allow_dangerous_deserialization=True)
|
64 |
+
return lv_vector_store
|
65 |
+
else:
|
66 |
+
lv_temp_pdf_file_path = os.path.join("pdf-data",mv_pdf_input_file.name)
|
67 |
+
|
68 |
+
# -- Loading PDF Data
|
69 |
+
lv_pdf_loader = PyPDFLoader(lv_temp_pdf_file_path)
|
70 |
+
lv_pdf_content = lv_pdf_loader.load()
|
71 |
+
|
72 |
+
# -- Define patterns with flexibility
|
73 |
+
pattern1 = r"(\w+)-\n(\w+)" # Match hyphenated words separated by a line break
|
74 |
+
pattern2 = r"(?<!\n\s)\n(?!\s\n)" # Match line breaks not surrounded by whitespace
|
75 |
+
pattern3 = r"\n\s*\n" # Match multiple line breaks with optional whitespace
|
76 |
+
|
77 |
+
lv_pdf_formatted_content = []
|
78 |
+
for lv_page in lv_pdf_content:
|
79 |
+
# -- Apply substitutions with flexibility
|
80 |
+
lv_pdf_page_content = re.sub(pattern1, r"\1\2", lv_page.page_content)
|
81 |
+
lv_pdf_page_content = re.sub(pattern2, " ", lv_pdf_page_content.strip())
|
82 |
+
lv_pdf_page_content = re.sub(pattern3, " ", lv_pdf_page_content)
|
83 |
+
lv_pdf_page_content = re.sub("\n", " ", lv_pdf_page_content)
|
84 |
+
|
85 |
+
lv_pdf_formatted_content.append(Document( page_content= lv_pdf_page_content,
|
86 |
+
metadata= lv_page.metadata)
|
87 |
+
)
|
88 |
+
|
89 |
+
# print("Page Details of "+str(lv_page.metadata)+" is - "+lv_pdf_page_content)
|
90 |
+
|
91 |
+
print("Step2: PDF content extracted")
|
92 |
+
fn_display_user_messages("Step2: PDF content extracted", "Info", mv_processing_message)
|
93 |
+
|
94 |
+
# -- Chunking PDF Data
|
95 |
+
lv_text_splitter = CharacterTextSplitter(
|
96 |
+
separator="\n",
|
97 |
+
chunk_size=300,
|
98 |
+
chunk_overlap=30,
|
99 |
+
length_function=len
|
100 |
+
)
|
101 |
+
lv_pdf_chunk_documents = lv_text_splitter.split_documents(lv_pdf_formatted_content)
|
102 |
+
print("Step3: PDF content chucked and document object created")
|
103 |
+
fn_display_user_messages("Step3: PDF content chucked and document object created", "Info", mv_processing_message)
|
104 |
|
105 |
+
# -- Creating FIASS Vector Store
|
106 |
+
lv_vector_store = FAISS.from_documents(lv_pdf_chunk_documents, lv_embeddings)
|
107 |
+
print("Step4: Vector store created")
|
108 |
+
fn_display_user_messages("Step4: Vector store created", "Info", mv_processing_message)
|
109 |
+
lv_vector_store.save_local(lv_temp_file_path)
|
110 |
|
111 |
+
return lv_vector_store
|
|
|
|
|
112 |
|
113 |
+
# Display user Error, Warning or Success Message
|
114 |
+
def fn_display_user_messages(lv_text, lv_type, mv_processing_message):
|
115 |
+
"""Display user Info, Error, Warning or Success Message"""
|
116 |
+
|
117 |
+
if lv_type == "Success":
|
118 |
+
with mv_processing_message.container():
|
119 |
+
st.success(lv_text)
|
120 |
+
elif lv_type == "Error":
|
121 |
+
with mv_processing_message.container():
|
122 |
+
st.error(lv_text)
|
123 |
+
elif lv_type == "Warning":
|
124 |
+
with mv_processing_message.container():
|
125 |
+
st.warning(lv_text)
|
126 |
+
else:
|
127 |
+
with mv_processing_message.container():
|
128 |
+
st.info(lv_text)
|
129 |
|
130 |
+
# Download TheBloke Models
|
131 |
+
def fn_download_llm_models(mv_selected_model, mv_processing_message):
|
132 |
+
"""Download TheBloke Models"""
|
133 |
|
134 |
+
lv_download_url = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
print("Downloading TheBloke of "+mv_selected_model)
|
137 |
+
fn_display_user_messages("Downloading TheBloke of "+mv_selected_model, "Info", mv_processing_message)
|
|
|
138 |
|
139 |
+
if mv_selected_model == 'microsoft/phi-2':
|
140 |
+
lv_download_url = "https://huggingface.co/TheBloke/phi-2-GGUF/resolve/main/phi-2.Q2_K.gguf"
|
141 |
+
elif mv_selected_model == 'google/gemma-2b':
|
142 |
+
lv_download_url = "https://huggingface.co/MaziyarPanahi/gemma-2b-it-GGUF/resolve/main/gemma-2b-it.Q2_K.gguf"
|
143 |
+
elif mv_selected_model == 'mistralai/Mistral-7B-Instruct-v0.2':
|
144 |
+
lv_download_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q2_K.gguf"
|
145 |
+
|
146 |
+
if not os.path.exists("model"):
|
147 |
+
os.makedirs("model")
|
148 |
+
|
149 |
+
lv_filename = os.path.basename(lv_download_url)
|
150 |
+
lv_temp_file_path = os.path.join("model",lv_filename)
|
151 |
|
152 |
+
if os.path.exists(lv_temp_file_path):
|
153 |
+
print("Model already available")
|
154 |
+
fn_display_user_messages("Model already available","Warning", mv_processing_message)
|
155 |
+
else:
|
156 |
+
lv_response = requests.get(lv_download_url, stream=True)
|
157 |
+
if lv_response.status_code == 200:
|
158 |
+
with open(lv_temp_file_path, 'wb') as f:
|
159 |
+
for chunk in lv_response.iter_content(chunk_size=1024):
|
160 |
+
if chunk:
|
161 |
+
f.write(chunk)
|
162 |
+
|
163 |
+
print("Download completed")
|
164 |
+
fn_display_user_messages("Model download completed","Info", mv_processing_message)
|
165 |
+
else:
|
166 |
+
print(f"Model download completed {response.status_code}")
|
167 |
+
fn_display_user_messages(f"Model download completed {response.status_code}","Error", mv_processing_message)
|
168 |
+
|
169 |
+
# Function return QA Response using Vector Store
|
170 |
+
def fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message):
|
171 |
+
"""Returns QA Response using Vector Store"""
|
172 |
+
|
173 |
+
lv_model_path = ""
|
174 |
+
lv_model_type = ""
|
175 |
lv_template = """Instruction:
|
176 |
You are an AI assistant for answering questions about the provided context.
|
177 |
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
|
|
|
181 |
=======
|
182 |
Question: {question}
|
183 |
Output:\n"""
|
|
|
184 |
lv_qa_prompt = PromptTemplate(
|
185 |
+
template=lv_template,
|
186 |
+
input_variables=["question", "context"]
|
187 |
+
)
|
188 |
+
|
189 |
+
if mv_selected_model == 'microsoft/phi-2':
|
190 |
+
lv_model_path = "model/phi-2.Q2_K.gguf"
|
191 |
+
lv_model_type = "pi"
|
192 |
+
elif mv_selected_model == 'google/gemma-2b':
|
193 |
+
lv_model_path = "model/gemma-2b-it.Q2_K.gguf"
|
194 |
+
lv_model_type = "gemma"
|
195 |
+
elif mv_selected_model == 'mistralai/Mistral-7B-Instruct-v0.2':
|
196 |
+
lv_model_path = "model/mistral-7b-instruct-v0.2.Q2_K.gguf"
|
197 |
+
lv_model_type = "mistral"
|
198 |
+
|
199 |
+
print("Step4: Generating LLM response")
|
200 |
+
fn_display_user_messages("Step4: Generating LLM response","Info", mv_processing_message)
|
201 |
+
|
202 |
+
lv_model = LlamaCpp(
|
203 |
+
model_path=lv_model_path,
|
204 |
+
temperature=0.00,
|
205 |
+
max_tokens=2048,
|
206 |
+
top_p=1,
|
207 |
+
n_ctx=2048,
|
208 |
+
verbose=False
|
209 |
+
)
|
210 |
+
lv_vector_search_result = lv_vector_store.similarity_search(mv_user_question, k=2)
|
211 |
+
# print("Vector Search Result - ")
|
212 |
+
# print(lv_vector_search_result)
|
213 |
+
|
214 |
+
# -- Creating formatted document result
|
215 |
+
lv_document_context = ""
|
216 |
+
lv_count = 0
|
217 |
+
for lv_result in lv_vector_search_result:
|
218 |
+
print("Concatenating Result of page - " + str(lv_count) + " with content of document page no - "+str(lv_result.metadata["page"]))
|
219 |
+
lv_document_context += lv_result.page_content
|
220 |
+
lv_count += 1
|
221 |
+
|
222 |
+
# print("Formatted Document Search Result - ")
|
223 |
+
# print(lv_document_context)
|
224 |
|
225 |
lv_qa_formatted_prompt = lv_qa_prompt.format(
|
226 |
+
question=mv_user_question,
|
227 |
+
context=lv_document_context
|
228 |
+
)
|
229 |
+
print("Formatted Prompt - " + lv_qa_formatted_prompt)
|
230 |
+
|
231 |
+
lv_llm_response = lv_model(lv_qa_formatted_prompt)
|
232 |
+
# print("LLM Response" +lv_llm_response)
|
233 |
|
234 |
print("Step5: LLM response generated")
|
235 |
fn_display_user_messages("Step5: LLM response generated","Info", mv_processing_message)
|
236 |
|
237 |
return lv_llm_response
|
238 |
|
239 |
+
# Function return API based QA Response using Vector Store
|
240 |
+
def fn_generate_API_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message):
|
241 |
+
"""Returns QA Response using Vector Store"""
|
242 |
+
|
243 |
+
lv_template = """Instruction:
|
244 |
+
You are an AI assistant for answering questions about the provided context.
|
245 |
+
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
|
246 |
+
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
|
247 |
+
=======
|
248 |
+
{context}
|
249 |
+
=======
|
250 |
+
Question: {question}
|
251 |
+
Output:\n"""
|
252 |
+
lv_qa_prompt = PromptTemplate(
|
253 |
+
template=lv_template,
|
254 |
+
input_variables=["question", "context"]
|
255 |
+
)
|
256 |
+
|
257 |
+
lv_vector_search_result = lv_vector_store.similarity_search(mv_user_question, k=2)
|
258 |
+
# print("Vector Search Result - ")
|
259 |
+
# print(lv_vector_search_result)
|
260 |
+
|
261 |
+
# -- Creating formatted document result
|
262 |
+
lv_document_context = ""
|
263 |
+
lv_count = 0
|
264 |
+
for lv_result in lv_vector_search_result:
|
265 |
+
# print("Concatenating Result of page - " + str(lv_count) + " with content of document page no - "+str(lv_result.metadata["page"]))
|
266 |
+
lv_document_context += lv_result.page_content
|
267 |
+
lv_count += 1
|
268 |
|
269 |
+
print("Formatted Document Search Result - ")
|
270 |
+
print(lv_document_context)
|
271 |
+
|
272 |
+
lv_qa_formatted_prompt = lv_qa_prompt.format(
|
273 |
+
question=mv_user_question,
|
274 |
+
context=lv_document_context
|
275 |
+
)
|
276 |
+
|
277 |
+
if mv_selected_model == 'Google Gemini-pro':
|
278 |
+
lv_model = genai.GenerativeModel('gemini-pro')
|
279 |
+
|
280 |
+
print("Step4: Generating LLM response")
|
281 |
+
fn_display_user_messages("Step4: Generating LLM response","Info", mv_processing_message)
|
282 |
+
|
283 |
+
lv_llm_response = lv_model.generate_content(lv_qa_formatted_prompt).text
|
284 |
+
|
285 |
+
print("Step5: LLM response generated")
|
286 |
+
fn_display_user_messages("Step5: LLM response generated","Info", mv_processing_message)
|
287 |
+
|
288 |
+
return lv_llm_response
|
289 |
+
|
290 |
+
# Main Function
|
291 |
def main():
|
292 |
+
|
293 |
# -- Streamlit Settings
|
294 |
+
st.set_page_config(layout='wide')
|
295 |
+
col1, col2, col3 = st.columns(3)
|
296 |
+
col2.title("Chat with PDF")
|
297 |
st.text("")
|
298 |
+
|
299 |
+
# -- Initialize chat history
|
300 |
+
if "messages" not in st.session_state:
|
301 |
+
st.session_state.messages = []
|
302 |
+
|
303 |
+
# -- Display Supported Models
|
304 |
+
col1, col2, col3 = st.columns(3)
|
305 |
+
mv_selected_model = col3.selectbox('Select Model',
|
306 |
+
[
|
307 |
+
'microsoft/phi-2',
|
308 |
+
'google/gemma-2b',
|
309 |
+
'mistralai/Mistral-7B-Instruct-v0.2',
|
310 |
+
'Google Gemini-pro'
|
311 |
+
]
|
312 |
+
)
|
313 |
+
|
314 |
+
# -- Display Supported Vector Stores
|
315 |
+
col1, col2, col3 = st.columns(3)
|
316 |
+
mv_selected_vector_db = col3.selectbox('Select Vector DB', ['FAISS'])
|
317 |
st.text("")
|
318 |
|
319 |
+
# -- Reading PDF File
|
320 |
+
col1, col2, col3 = st.columns(3)
|
321 |
+
mv_pdf_input_file = col2.file_uploader("Choose a PDF file:", type=["pdf"])
|
322 |
+
|
323 |
# -- Display Processing Details
|
|
|
324 |
st.text("")
|
325 |
+
col1, col2, col3 = st.columns(3)
|
326 |
+
mv_processing_message = col2.empty()
|
327 |
st.text("")
|
328 |
|
329 |
+
# -- Downloading Model Files
|
330 |
+
if mv_selected_model != "Google Gemini-pro":
|
331 |
+
fn_download_llm_models(mv_selected_model, mv_processing_message)
|
332 |
+
else:
|
333 |
+
print("Call Google API")
|
334 |
+
|
335 |
+
# -- Processing PDF
|
336 |
+
if (mv_pdf_input_file is not None):
|
337 |
+
|
338 |
+
# -- Upload PDF
|
339 |
+
fn_upload_pdf(mv_pdf_input_file, mv_processing_message)
|
340 |
+
|
341 |
+
# -- Create Vector Index
|
342 |
+
lv_vector_store = fn_create_vector_db(mv_pdf_input_file, mv_processing_message)
|
343 |
|
344 |
+
# -- Perform RAG
|
345 |
+
col1, col2, col3 = st.columns(3)
|
|
|
346 |
st.text("")
|
347 |
+
lv_chat_history = col2.chat_message
|
348 |
st.text("")
|
349 |
+
|
350 |
+
if mv_user_question := col2.chat_input("Chat on PDF Data"):
|
351 |
+
# -- Add user message to chat history
|
352 |
+
st.session_state.messages.append({"role": "user", "content": mv_user_question})
|
353 |
+
|
354 |
+
# -- Generating LLM response
|
355 |
+
if mv_selected_model != "Google Gemini-pro":
|
356 |
+
lv_response = fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message)
|
357 |
+
else:
|
358 |
+
lv_response = fn_generate_API_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message)
|
359 |
+
|
360 |
+
# -- Adding assistant response to chat history
|
361 |
+
st.session_state.messages.append({"role": "assistant", "content": lv_response})
|
362 |
|
363 |
+
# -- Display chat messages from history on app rerun
|
364 |
+
for message in st.session_state.messages:
|
365 |
+
with lv_chat_history(message["role"]):
|
366 |
+
st.markdown(message["content"])
|
367 |
+
|
368 |
+
# -- Validate Data
|
369 |
+
|
370 |
+
# -- Get Web Response
|
371 |
+
|
372 |
+
# Calling Main Function
|
373 |
+
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
main()
|