textual-inversion-sd / sd_utils.py
744/C/B0228844//Rohit_Jain
app
5b47935
raw
history blame contribute delete
No virus
9.08 kB
import os
import numpy
import torch
from torch import autocast
from torchvision import transforms as tfms
import torch.nn.functional as F
import PIL
from PIL import Image
from diffusers import StableDiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, KDPM2DiscreteScheduler
# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from tqdm.auto import tqdm
import cv2
bb = cv2.imread("./qr_code1.png")
bb = cv2.cvtColor(bb, cv2.COLOR_BGR2RGB)
tfm2 = tfms.Compose([
tfms.ToTensor(),
tfms.Resize([512, 512]),
tfms.CenterCrop(512),
#tfms.Normalize((0.6813,0.6813, 0.6813), (0.4549, 0.4549, 0.4549))
])
img2 = tfm2(bb)
device = "cuda" if torch.cuda.is_available() else "cpu"
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
#scheduler = KDPM2DiscreteScheduler(num_train_timesteps=1000, beta_start=)
# To the GPU we go!
vae = vae.to(device)
text_encoder = text_encoder.to(device)
unet = unet.to(device)
pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,torch_dtype=torch.float16).to(device)
# birb_embed = pipe.load_textual_inversion("sd-concepts-library/birb-style")
# herge_embed = pipe.load_textual_inversion("sd-concepts-library/herge-style")
# indian_water_color_embed = pipe.load_textual_inversion("sd-concepts-library/indian-watercolor-portraits")
# midjourney_embed = pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
# marc_allante_embed = pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
birb_embed = torch.load('./birb-style/learned_embeds.bin')
herge_embed = torch.load('./herge-style/learned_embeds.bin')
indian_water_color_embed = torch.load('./indian-watercolor-portraits/learned_embeds.bin')
midjourney_embed = torch.load('./midjourney-style/learned_embeds.bin')
marc_allante_embed = torch.load('./style-of-marc-allante/learned_embeds.bin')
style_seeds = {
'birb': 321,
'herge': 1,
'indian_watercolor': 42,
'midjourney': 8081,
'marc_allante': 100
}
def qr_loss(images, qr_img):
#qr_img = 0.5 * qr_img
qr_img = qr_img.unsqueeze(0).to(device)
#error = F.mse_loss(images, qr_img, reduction='mean')
error = F.l1_loss(images, qr_img, reduction='mean')
return error
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
#causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready
return output
def build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
def generate_with_embs_custom_loss(prompt, text_embeddings, seed):
#prompt = "A labrador dog in a car" #@param
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 50 #@param # Number of denoising steps
guidance_scale = 11 #@param # Scale for classifier-free guidance
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
blue_loss_scale = 100 #@param
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%2 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
#loss = blue_loss(denoised_images) * blue_loss_scale
#loss = purple_loss(denoised_images) * blue_loss_scale
loss = qr_loss(denoised_images, img2) * blue_loss_scale
# Occasionally print it out
if i%10==0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]