Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SelfAttentionHead(nn.Module): | |
def __init__(self, head_size, n_embed, block_size, dropout=0.2) -> None: | |
super().__init__() | |
self.head_size = head_size | |
self.key = nn.Linear(n_embed, head_size, bias=False) | |
self.query = nn.Linear(n_embed, head_size, bias=False) | |
self.value = nn.Linear(n_embed, head_size, bias=False) | |
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B, T, C = x.shape | |
k = self.key(x) # (B, T, C) | |
q = self.query(x) # (B, T, C) | |
wei = q @ k.transpose(-2, -1) * (C ** -0.5) # (B, T, C) @ (B, C, T) -> (B, T, T) | |
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) | |
wei = F.softmax(wei, dim=-1) # (B, T, T) | |
wei = self.dropout(wei) | |
v = self.value(x) # (B, T, C) | |
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C) | |
return out | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, num_heads, head_size, n_embed, block_size, dropout=0.2) -> None: | |
super().__init__() | |
self.heads = nn.ModuleList([SelfAttentionHead(head_size, n_embed, block_size) for _ in range(num_heads)]) | |
# self.projection = nn.Linear(num_heads * head_size, n_embed) | |
self.projection = nn.Linear(n_embed, n_embed) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
out = self.dropout(self.projection(out)) | |
return out | |
class FeedForwardNet(nn.Module): | |
def __init__(self, n_embed, dropout=0.2) -> None: | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embed, 4 * n_embed), | |
nn.ReLU(), | |
nn.Linear(4 * n_embed, n_embed), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class DecoderBlock(nn.Module): | |
def __init__(self, n_embed, num_heads, block_size) -> None: | |
super().__init__() | |
head_size = n_embed // num_heads | |
self.sa_head = MultiHeadAttention(num_heads, head_size, n_embed, block_size) | |
self.ffn = FeedForwardNet(n_embed) | |
self.ln1 = nn.LayerNorm(n_embed) | |
self.ln2 = nn.LayerNorm(n_embed) | |
def forward(self, x): | |
x = x + self.sa_head(self.ln1(x)) | |
x = x + self.ffn(self.ln2(x)) | |
return x | |