Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
from flask import Flask, request, jsonify
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
# Configure logging
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
app = Flask(__name__)
|
| 13 |
+
|
| 14 |
+
# Qwen3-Embedding-4B model for retrieval
|
| 15 |
+
MODEL_NAME = "Qwen/Qwen3-Embedding-4B"
|
| 16 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
EMBEDDING_DIM = 2560 # Max dimension for Qwen3-Embedding-4B
|
| 18 |
+
|
| 19 |
+
class EmbeddingModel:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
logger.info(f"Loading {MODEL_NAME} on {DEVICE}")
|
| 22 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 23 |
+
self.model = AutoModel.from_pretrained(MODEL_NAME)
|
| 24 |
+
self.model.to(DEVICE)
|
| 25 |
+
self.model.eval()
|
| 26 |
+
logger.info("✅ Model loaded successfully")
|
| 27 |
+
|
| 28 |
+
def encode(self, texts, batch_size=16):
|
| 29 |
+
"""Encode texts to embeddings using Qwen3-Embedding-4B"""
|
| 30 |
+
if isinstance(texts, str):
|
| 31 |
+
texts = [texts]
|
| 32 |
+
|
| 33 |
+
embeddings = []
|
| 34 |
+
|
| 35 |
+
for i in range(0, len(texts), batch_size):
|
| 36 |
+
batch_texts = texts[i:i + batch_size]
|
| 37 |
+
|
| 38 |
+
# Qwen3 instruction format for retrieval
|
| 39 |
+
batch_texts = [f"Instruct: Retrieve semantically similar text.\nQuery: {text}" for text in batch_texts]
|
| 40 |
+
|
| 41 |
+
inputs = self.tokenizer(
|
| 42 |
+
batch_texts,
|
| 43 |
+
padding="left", # Qwen3 recommendation
|
| 44 |
+
truncation=True,
|
| 45 |
+
max_length=32768, # Qwen3 supports up to 32k context
|
| 46 |
+
return_tensors="pt"
|
| 47 |
+
).to(DEVICE)
|
| 48 |
+
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
outputs = self.model(**inputs)
|
| 51 |
+
# Use EOS token embedding for Qwen3
|
| 52 |
+
eos_token_id = self.tokenizer.eos_token_id
|
| 53 |
+
sequence_lengths = (inputs['input_ids'] == eos_token_id).long().argmax(-1) - 1
|
| 54 |
+
|
| 55 |
+
batch_embeddings = []
|
| 56 |
+
for j, seq_len in enumerate(sequence_lengths):
|
| 57 |
+
embedding = outputs.last_hidden_state[j, seq_len, :].cpu().numpy()
|
| 58 |
+
batch_embeddings.append(embedding)
|
| 59 |
+
|
| 60 |
+
batch_embeddings = np.array(batch_embeddings)
|
| 61 |
+
|
| 62 |
+
# Normalize embeddings
|
| 63 |
+
batch_embeddings = batch_embeddings / np.linalg.norm(batch_embeddings, axis=1, keepdims=True)
|
| 64 |
+
|
| 65 |
+
embeddings.extend(batch_embeddings)
|
| 66 |
+
|
| 67 |
+
return embeddings
|
| 68 |
+
|
| 69 |
+
# Global model instance
|
| 70 |
+
embedding_model = None
|
| 71 |
+
|
| 72 |
+
def get_model():
|
| 73 |
+
global embedding_model
|
| 74 |
+
if embedding_model is None:
|
| 75 |
+
embedding_model = EmbeddingModel()
|
| 76 |
+
return embedding_model
|
| 77 |
+
|
| 78 |
+
@app.route("/", methods=["GET"])
|
| 79 |
+
def health_check():
|
| 80 |
+
return jsonify({
|
| 81 |
+
"status": "healthy",
|
| 82 |
+
"model": MODEL_NAME,
|
| 83 |
+
"device": DEVICE,
|
| 84 |
+
"embedding_dim": EMBEDDING_DIM,
|
| 85 |
+
"max_context": 32768
|
| 86 |
+
})
|
| 87 |
+
|
| 88 |
+
@app.route("/embed", methods=["POST"])
|
| 89 |
+
def embed_texts():
|
| 90 |
+
"""Embed texts and return embeddings"""
|
| 91 |
+
try:
|
| 92 |
+
data = request.get_json()
|
| 93 |
+
|
| 94 |
+
if not data or "texts" not in data:
|
| 95 |
+
return jsonify({"error": "Missing 'texts' field"}), 400
|
| 96 |
+
|
| 97 |
+
texts = data["texts"]
|
| 98 |
+
if not isinstance(texts, list):
|
| 99 |
+
texts = [texts]
|
| 100 |
+
|
| 101 |
+
logger.info(f"Embedding {len(texts)} texts")
|
| 102 |
+
|
| 103 |
+
model = get_model()
|
| 104 |
+
embeddings = model.encode(texts)
|
| 105 |
+
|
| 106 |
+
return jsonify({
|
| 107 |
+
"embeddings": [embedding.tolist() for embedding in embeddings],
|
| 108 |
+
"model": MODEL_NAME,
|
| 109 |
+
"dimension": len(embeddings[0]) if embeddings else 0,
|
| 110 |
+
"count": len(embeddings)
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
logger.error(f"Embedding error: {str(e)}")
|
| 115 |
+
return jsonify({"error": str(e)}), 500
|
| 116 |
+
|
| 117 |
+
@app.route("/embed_single", methods=["POST"])
|
| 118 |
+
def embed_single():
|
| 119 |
+
"""Embed single text (convenience endpoint)"""
|
| 120 |
+
try:
|
| 121 |
+
data = request.get_json()
|
| 122 |
+
|
| 123 |
+
if not data or "text" not in data:
|
| 124 |
+
return jsonify({"error": "Missing 'text' field"}), 400
|
| 125 |
+
|
| 126 |
+
text = data["text"]
|
| 127 |
+
logger.info(f"Embedding single text: {text[:100]}...")
|
| 128 |
+
|
| 129 |
+
model = get_model()
|
| 130 |
+
embeddings = model.encode([text])
|
| 131 |
+
|
| 132 |
+
return jsonify({
|
| 133 |
+
"embedding": embeddings[0].tolist(),
|
| 134 |
+
"model": MODEL_NAME,
|
| 135 |
+
"dimension": len(embeddings[0]),
|
| 136 |
+
"text_length": len(text)
|
| 137 |
+
})
|
| 138 |
+
|
| 139 |
+
except Exception as e:
|
| 140 |
+
logger.error(f"Single embedding error: {str(e)}")
|
| 141 |
+
return jsonify({"error": str(e)}), 500
|
| 142 |
+
|
| 143 |
+
if __name__ == "__main__":
|
| 144 |
+
# Initialize model on startup
|
| 145 |
+
logger.info("🚀 Starting embedding service...")
|
| 146 |
+
get_model()
|
| 147 |
+
logger.info("✅ Service ready!")
|
| 148 |
+
|
| 149 |
+
port = int(os.environ.get("PORT", 7860))
|
| 150 |
+
app.run(host="0.0.0.0", port=port)
|