|
import streamlit as st |
|
from transformers import AutoModel |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
import urllib.request |
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model = AutoModel.from_pretrained("ragavsachdeva/magi", trust_remote_code=True) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
return model |
|
|
|
@st.cache_data |
|
def read_image_as_np_array(image_path): |
|
if "http" in image_path: |
|
image = Image.open(urllib.request.urlopen(image_path)).convert("L").convert("RGB") |
|
else: |
|
image = Image.open(image_path).convert("L").convert("RGB") |
|
image = np.array(image) |
|
return image |
|
|
|
@st.cache_data |
|
def predict_detections_and_associations( |
|
image_path, |
|
character_detection_threshold, |
|
panel_detection_threshold, |
|
text_detection_threshold, |
|
character_character_matching_threshold, |
|
text_character_matching_threshold, |
|
): |
|
image = read_image_as_np_array(image_path) |
|
with torch.no_grad(): |
|
result = model.predict_detections_and_associations( |
|
[image], |
|
character_detection_threshold=character_detection_threshold, |
|
panel_detection_threshold=panel_detection_threshold, |
|
text_detection_threshold=text_detection_threshold, |
|
character_character_matching_threshold=character_character_matching_threshold, |
|
text_character_matching_threshold=text_character_matching_threshold, |
|
)[0] |
|
return result |
|
|
|
@st.cache_data |
|
def predict_ocr( |
|
image_path, |
|
character_detection_threshold, |
|
panel_detection_threshold, |
|
text_detection_threshold, |
|
character_character_matching_threshold, |
|
text_character_matching_threshold, |
|
): |
|
if not generate_transcript: |
|
return |
|
image = read_image_as_np_array(image_path) |
|
result = predict_detections_and_associations( |
|
path_to_image, |
|
character_detection_threshold, |
|
panel_detection_threshold, |
|
text_detection_threshold, |
|
character_character_matching_threshold, |
|
text_character_matching_threshold, |
|
) |
|
text_bboxes_for_all_images = [result["texts"]] |
|
with torch.no_grad(): |
|
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images) |
|
return ocr_results |
|
|
|
model = load_model() |
|
|
|
st.markdown(""" <style> .title-container { background-color: #0d1117; padding: 20px; border-radius: 10px; margin: 20px; } .title { font-size: 2em; text-align: center; color: #fff; font-family: 'Comic Sans MS', cursive; text-transform: uppercase; letter-spacing: 0.1em; padding: 0.5em 0 0.2em; background: 0 0; } .title span { background: -webkit-linear-gradient(45deg, #6495ed, #4169e1); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .subheading { font-size: 1.5em; text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .affil, .authors { font-size: 1em; text-align: center; color: #ddd; font-family: 'Comic Sans MS', cursive; } .authors { padding-top: 1em; } </style> <div class='title-container'> <div class='title'> The <span>Ma</span>n<span>g</span>a Wh<span>i</span>sperer </div> <div class='subheading'> Automatically Generating Transcriptions for Comics </div> <div class='authors'> Ragav Sachdeva and Andrew Zisserman </div> <div class='affil'> University of Oxford </div> </div>""", unsafe_allow_html=True) |
|
path_to_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) |
|
|
|
st.sidebar.markdown("**Mode**") |
|
generate_detections_and_associations = st.sidebar.toggle("Generate detections and associations", True) |
|
generate_transcript = st.sidebar.toggle("Generate transcript (slower)", False) |
|
st.sidebar.markdown("**Hyperparameters**") |
|
input_character_detection_threshold = st.sidebar.slider('Character detection threshold', 0.0, 1.0, 0.30, step=0.01) |
|
input_panel_detection_threshold = st.sidebar.slider('Panel detection threshold', 0.0, 1.0, 0.2, step=0.01) |
|
input_text_detection_threshold = st.sidebar.slider('Text detection threshold', 0.0, 1.0, 0.25, step=0.01) |
|
input_character_character_matching_threshold = st.sidebar.slider('Character-character matching threshold', 0.0, 1.0, 0.7, step=0.01) |
|
input_text_character_matching_threshold = st.sidebar.slider('Text-character matching threshold', 0.0, 1.0, 0.4, step=0.01) |
|
|
|
|
|
if path_to_image is not None: |
|
image = read_image_as_np_array(path_to_image) |
|
|
|
st.markdown("**Prediction**") |
|
if generate_detections_and_associations or generate_transcript: |
|
result = predict_detections_and_associations( |
|
path_to_image, |
|
input_character_detection_threshold, |
|
input_panel_detection_threshold, |
|
input_text_detection_threshold, |
|
input_character_character_matching_threshold, |
|
input_text_character_matching_threshold, |
|
) |
|
|
|
if generate_transcript: |
|
ocr_results = predict_ocr( |
|
path_to_image, |
|
input_character_detection_threshold, |
|
input_panel_detection_threshold, |
|
input_text_detection_threshold, |
|
input_character_character_matching_threshold, |
|
input_text_character_matching_threshold, |
|
) |
|
|
|
if generate_detections_and_associations and generate_transcript: |
|
col1, col2 = st.columns(2) |
|
output = model.visualise_single_image_prediction(image, result) |
|
col1.image(output) |
|
text_bboxes_for_all_images = [result["texts"]] |
|
ocr_results = model.predict_ocr([image], text_bboxes_for_all_images) |
|
transcript = model.generate_transcript_for_single_image(result, ocr_results[0]) |
|
col2.text(transcript) |
|
|
|
elif generate_detections_and_associations: |
|
output = model.visualise_single_image_prediction(image, result) |
|
st.image(output) |
|
|
|
elif generate_transcript: |
|
transcript = model.generate_transcript_for_single_image(result, ocr_results[0]) |
|
st.text(transcript) |
|
|
|
|