rafaldembski commited on
Commit
b5eda20
verified
1 Parent(s): 27817fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -77
app.py CHANGED
@@ -7,53 +7,51 @@ import torch
7
  from torch.autograd import Variable
8
  from torchvision import transforms
9
  import torch.nn.functional as F
 
10
  import warnings
 
11
  warnings.filterwarnings("ignore")
12
 
13
- # Sprawdzenie, czy katalog DIS istnieje przed klonowaniem
14
  if not os.path.exists("DIS"):
15
  os.system("git clone https://github.com/xuebinqin/DIS")
 
16
  os.system("mv DIS/IS-Net/* .")
17
 
18
  # project imports
19
- from data_loader_cache import normalize, im_reader, im_preprocess
20
  from models import *
21
 
22
  # Helpers
23
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
24
 
25
- # Sprawdzenie, czy katalog z modelami istnieje przed przeniesieniem
26
  if not os.path.exists("saved_models"):
27
  os.mkdir("saved_models")
28
  if not os.path.exists("saved_models/isnet.pth"):
29
  os.system("mv isnet.pth saved_models/")
30
 
31
  class GOSNormalize(object):
32
- '''
33
- Normalize the Image using torch.transforms
34
- '''
35
- def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
36
  self.mean = mean
37
  self.std = std
38
 
39
- def __call__(self,image):
40
- image = normalize(image,self.mean,self.std)
41
  return image
42
 
43
- transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
44
 
45
  def load_image(im_path, hypar):
46
  im = im_reader(im_path)
47
  im, im_shp = im_preprocess(im, hypar["cache_size"])
48
- im = torch.divide(im,255.0)
49
  shape = torch.from_numpy(np.array(im_shp))
50
- return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
51
 
52
- def build_model(hypar,device):
53
  net = hypar["model"]
54
 
55
- # convert to half precision
56
- if(hypar["model_digit"]=="half"):
57
  net.half()
58
  for layer in net.modules():
59
  if isinstance(layer, nn.BatchNorm2d):
@@ -61,53 +59,47 @@ def build_model(hypar,device):
61
 
62
  net.to(device)
63
 
64
- if(hypar["restore_model"]!=""):
65
- net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
66
  net.to(device)
67
- net.eval()
68
  return net
69
 
70
  def predict(net, inputs_val, shapes_val, hypar, device):
71
- '''
72
- Given an Image, predict the mask
73
- '''
74
  net.eval()
75
 
76
- if(hypar["model_digit"]=="full"):
77
  inputs_val = inputs_val.type(torch.FloatTensor)
78
  else:
79
  inputs_val = inputs_val.type(torch.HalfTensor)
80
 
81
- inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
82
- ds_val = net(inputs_val_v)[0] # list of 6 results
83
- pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
84
 
85
- # recover the prediction spatial size to the orignal image size
86
- pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
87
 
88
  ma = torch.max(pred_val)
89
  mi = torch.min(pred_val)
90
- pred_val = (pred_val-mi)/(ma-mi) # max = 1
91
 
92
  if device == 'cuda': torch.cuda.empty_cache()
93
- return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
94
-
95
  # Set Parameters
96
- hypar = {} # parameters for inferencing
97
 
98
- hypar["model_path"] ="./saved_models" ## load trained weights from this path
99
- hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
100
- hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
101
 
102
- ## choose floating point accuracy --
103
- hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
104
  hypar["seed"] = 0
105
 
106
- hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
107
 
108
- ## data augmentation parameters ---
109
- hypar["input_size"] = [1024, 1024] ## model input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
110
- hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
111
 
112
  hypar["model"] = ISNetDIS()
113
 
@@ -115,68 +107,57 @@ hypar["model"] = ISNetDIS()
115
  net = build_model(hypar, device)
116
 
117
  def inference(image):
118
- image_path = image
119
- image_tensor, orig_size = load_image(image_path, hypar)
120
  mask = predict(net, image_tensor, orig_size, hypar, device)
121
-
122
  pil_mask = Image.fromarray(mask).convert('L')
123
  im_rgb = Image.open(image).convert("RGB")
124
-
125
  im_rgba = im_rgb.copy()
126
  im_rgba.putalpha(pil_mask)
127
 
128
  return [im_rgba, pil_mask]
129
 
130
- # Translations for multi-language support
131
  translations = {
132
  "pl": {
133
  "title": "Zaawansowane Segmentowanie Obraz贸w",
134
  "description": """
135
- # Zaawansowane Segmentowanie Obraz贸w
136
-
137
  **Zaawansowane Segmentowanie Obraz贸w** to zaawansowane narz臋dzie oparte na sztucznej inteligencji, zaprojektowane do precyzyjnego segmentowania obraz贸w. Aplikacja ta wykorzystuje najnowsze technologie g艂臋bokiego uczenia, aby generowa膰 dok艂adne maski dla r贸偶nych typ贸w obraz贸w. Stworzona przez ekspert贸w, oferuje u偶ytkownikom intuicyjny interfejs do przetwarzania obraz贸w. Niezale偶nie od tego, czy jest u偶ywana do cel贸w zawodowych, czy do projekt贸w osobistych, to narz臋dzie zapewnia najwy偶sz膮 jako艣膰 i niezawodno艣膰 w zadaniach segmentacji obraz贸w.
 
 
 
 
 
138
  """,
139
- "article": """
140
- ## Technologie
141
-
142
- - **Model**: ISNetDIS
143
- - **Stworzony przez**: Rafa艂 Dembski
144
- - **Technologie**: PyTorch, Gradio, OpenCV
145
- """
146
  },
147
  "en": {
148
  "title": "Advanced Image Segmentation",
149
  "description": """
150
- # Advanced Image Segmentation
151
-
152
- **Advanced Image Segmentation** is a cutting-edge AI-powered tool developed to provide highly accurate image segmentation. This application utilizes state-of-the-art deep learning techniques to generate precise masks for various types of images. Developed by experts, it offers users an intuitive interface to process their images effortlessly. Whether for professional use or personal projects, this tool ensures superior quality and reliability in image segmentation tasks.
 
 
 
153
  """,
154
- "article": """
155
- ## Technologies
156
-
157
- - **Model**: ISNetDIS
158
- - **Developed by**: Rafa艂 Dembski
159
- - **Technologies**: PyTorch, Gradio, OpenCV
160
- """
161
  },
162
  "de": {
163
- "title": "Fortschrittliche Bildsegmentierung",
164
  "description": """
165
- # Fortschrittliche Bildsegmentierung
166
-
167
- **Fortschrittliche Bildsegmentierung** ist ein fortschrittliches KI-gest眉tztes Tool, das entwickelt wurde, um hochpr盲zise Bildsegmentierung zu erm枚glichen. Diese Anwendung nutzt modernste Techniken des Deep Learnings, um pr盲zise Masken f眉r verschiedene Arten von Bildern zu erstellen. Entwickelt von Experten, bietet es den Benutzern eine intuitive Oberfl盲che zur m眉helosen Verarbeitung ihrer Bilder. Ob f眉r professionelle Zwecke oder pers枚nliche Projekte, dieses Tool gew盲hrleistet h枚chste Qualit盲t und Zuverl盲ssigkeit bei Segmentierungsaufgaben.
 
 
 
168
  """,
169
- "article": """
170
- ## Technologien
171
-
172
- - **Modell**: ISNetDIS
173
- - **Entwickelt von**: Rafa艂 Dembski
174
- - **Technologien**: PyTorch, Gradio, OpenCV
175
- """
176
  }
177
  }
178
 
179
- # Gradio setup with Monochrome theme, logo, and description with language support
180
  css = """
181
  #col-container {
182
  margin: 0 auto;
@@ -188,7 +169,10 @@ def change_language(lang):
188
  return translations[lang]['title'], translations[lang]['description'], translations[lang]['article']
189
 
190
  with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as demo:
191
- language_selector = gr.Dropdown(choices=["pl", "en", "de"], value="en", label="Wybierz j臋zyk / Select Language / Sprache ausw盲hlen", show_label=True)
 
 
 
192
 
193
  title = gr.Markdown(translations["en"]["title"])
194
  description = gr.Markdown(translations["en"]["description"])
 
7
  from torch.autograd import Variable
8
  from torchvision import transforms
9
  import torch.nn.functional as F
10
+ import gdown
11
  import warnings
12
+
13
  warnings.filterwarnings("ignore")
14
 
 
15
  if not os.path.exists("DIS"):
16
  os.system("git clone https://github.com/xuebinqin/DIS")
17
+ if not os.path.exists("IS-Net"):
18
  os.system("mv DIS/IS-Net/* .")
19
 
20
  # project imports
21
+ from data_loader_cache import normalize, im_reader, im_preprocess
22
  from models import *
23
 
24
  # Helpers
25
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
26
 
27
+ # Download official weights
28
  if not os.path.exists("saved_models"):
29
  os.mkdir("saved_models")
30
  if not os.path.exists("saved_models/isnet.pth"):
31
  os.system("mv isnet.pth saved_models/")
32
 
33
  class GOSNormalize(object):
34
+ def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
 
 
 
35
  self.mean = mean
36
  self.std = std
37
 
38
+ def __call__(self, image):
39
+ image = normalize(image, self.mean, self.std)
40
  return image
41
 
42
+ transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
43
 
44
  def load_image(im_path, hypar):
45
  im = im_reader(im_path)
46
  im, im_shp = im_preprocess(im, hypar["cache_size"])
47
+ im = torch.divide(im, 255.0)
48
  shape = torch.from_numpy(np.array(im_shp))
49
+ return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
50
 
51
+ def build_model(hypar, device):
52
  net = hypar["model"]
53
 
54
+ if hypar["model_digit"] == "half":
 
55
  net.half()
56
  for layer in net.modules():
57
  if isinstance(layer, nn.BatchNorm2d):
 
59
 
60
  net.to(device)
61
 
62
+ if hypar["restore_model"] != "":
63
+ net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
64
  net.to(device)
65
+ net.eval()
66
  return net
67
 
68
  def predict(net, inputs_val, shapes_val, hypar, device):
 
 
 
69
  net.eval()
70
 
71
+ if hypar["model_digit"] == "full":
72
  inputs_val = inputs_val.type(torch.FloatTensor)
73
  else:
74
  inputs_val = inputs_val.type(torch.HalfTensor)
75
 
76
+ inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
77
+ ds_val = net(inputs_val_v)[0]
78
+ pred_val = ds_val[0][0, :, :, :]
79
 
80
+ pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
 
81
 
82
  ma = torch.max(pred_val)
83
  mi = torch.min(pred_val)
84
+ pred_val = (pred_val - mi) / (ma - mi)
85
 
86
  if device == 'cuda': torch.cuda.empty_cache()
87
+ return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
88
+
89
  # Set Parameters
90
+ hypar = {}
91
 
92
+ hypar["model_path"] = "./saved_models"
93
+ hypar["restore_model"] = "isnet.pth"
94
+ hypar["interm_sup"] = False
95
 
96
+ hypar["model_digit"] = "full"
 
97
  hypar["seed"] = 0
98
 
99
+ hypar["cache_size"] = [1024, 1024]
100
 
101
+ hypar["input_size"] = [1024, 1024]
102
+ hypar["crop_size"] = [1024, 1024]
 
103
 
104
  hypar["model"] = ISNetDIS()
105
 
 
107
  net = build_model(hypar, device)
108
 
109
  def inference(image):
110
+ image_tensor, orig_size = load_image(image, hypar)
 
111
  mask = predict(net, image_tensor, orig_size, hypar, device)
112
+
113
  pil_mask = Image.fromarray(mask).convert('L')
114
  im_rgb = Image.open(image).convert("RGB")
115
+
116
  im_rgba = im_rgb.copy()
117
  im_rgba.putalpha(pil_mask)
118
 
119
  return [im_rgba, pil_mask]
120
 
121
+ # Translation texts
122
  translations = {
123
  "pl": {
124
  "title": "Zaawansowane Segmentowanie Obraz贸w",
125
  "description": """
 
 
126
  **Zaawansowane Segmentowanie Obraz贸w** to zaawansowane narz臋dzie oparte na sztucznej inteligencji, zaprojektowane do precyzyjnego segmentowania obraz贸w. Aplikacja ta wykorzystuje najnowsze technologie g艂臋bokiego uczenia, aby generowa膰 dok艂adne maski dla r贸偶nych typ贸w obraz贸w. Stworzona przez ekspert贸w, oferuje u偶ytkownikom intuicyjny interfejs do przetwarzania obraz贸w. Niezale偶nie od tego, czy jest u偶ywana do cel贸w zawodowych, czy do projekt贸w osobistych, to narz臋dzie zapewnia najwy偶sz膮 jako艣膰 i niezawodno艣膰 w zadaniach segmentacji obraz贸w.
127
+
128
+ **Technologie**:
129
+ - Model: ISNetDIS
130
+ - Stworzony przez: Rafa艂 Dembski
131
+ - Technologie: PyTorch, Gradio, OpenCV
132
  """,
133
+ "article": ""
 
 
 
 
 
 
134
  },
135
  "en": {
136
  "title": "Advanced Image Segmentation",
137
  "description": """
138
+ **Advanced Image Segmentation** is an advanced AI-based tool designed for precise image segmentation. This application utilizes the latest deep learning technologies to generate accurate masks for different types of images. Created by experts, it offers users an intuitive interface for image processing. Whether used for professional purposes or personal projects, this tool ensures the highest quality and reliability in image segmentation tasks.
139
+
140
+ **Technologies**:
141
+ - Model: ISNetDIS
142
+ - Created by: Rafa艂 Dembski
143
+ - Technologies: PyTorch, Gradio, OpenCV
144
  """,
145
+ "article": ""
 
 
 
 
 
 
146
  },
147
  "de": {
148
+ "title": "Fortgeschrittene Bildsegmentierung",
149
  "description": """
150
+ **Fortgeschrittene Bildsegmentierung** ist ein fortschrittliches, auf k眉nstlicher Intelligenz basierendes Werkzeug, das f眉r die pr盲zise Bildsegmentierung entwickelt wurde. Diese Anwendung nutzt die neuesten Technologien des Deep Learnings, um genaue Masken f眉r verschiedene Bildtypen zu erzeugen. Von Experten erstellt, bietet es den Benutzern eine intuitive Benutzeroberfl盲che f眉r die Bildverarbeitung. Ob f眉r berufliche Zwecke oder pers枚nliche Projekte, dieses Werkzeug gew盲hrleistet h枚chste Qualit盲t und Zuverl盲ssigkeit bei der Bildsegmentierung.
151
+
152
+ **Technologien**:
153
+ - Modell: ISNetDIS
154
+ - Erstellt von: Rafa艂 Dembski
155
+ - Technologien: PyTorch, Gradio, OpenCV
156
  """,
157
+ "article": ""
 
 
 
 
 
 
158
  }
159
  }
160
 
 
161
  css = """
162
  #col-container {
163
  margin: 0 auto;
 
169
  return translations[lang]['title'], translations[lang]['description'], translations[lang]['article']
170
 
171
  with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as demo:
172
+ language = gr.State("en")
173
+
174
+ with gr.Row():
175
+ language_selector = gr.Dropdown(choices=["pl", "en", "de"], value="en", label="Wybierz j臋zyk / Select Language / Sprache ausw盲hlen", show_label=True)
176
 
177
  title = gr.Markdown(translations["en"]["title"])
178
  description = gr.Markdown(translations["en"]["description"])