Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import joblib | |
model = joblib.load('divar.sav') | |
st.title('what is the price of your house??') | |
Area = st.number_input("Input Area", 0,10000) | |
Room = st.selectbox("Room? ", [1,2,3,4,5,6,7,8,9,10]) | |
Parking = st.selectbox("Parking??", ['1','0']) | |
Warehouse = st.selectbox("Warehouse??", ['1','0']) | |
Elevator = st.selectbox("Elevator??", ['1','0']) | |
address1 = st.text_input("Adress??",'Abazar' ) | |
features=pd.read_csv('featues.csv') | |
address=pd.read_csv('address.csv') | |
new_row = {'Area': Area , 'Room': Room, 'Parking': Parking,'Warehouse':Warehouse,'Elevator':Elevator} | |
features.loc[len(features)] = new_row | |
address[address1]=True | |
merged = pd.concat([features, address],axis=1) | |
#final_df = merged.style.hide() | |
merged.to_csv('merged.csv',index=False) | |
test = pd.read_csv('merged.csv') | |
def predict(): | |
prediction = model.predict(test) | |
final=prediction/1000000000 | |
st.success('The price of your house is: ' + str(final) + ' Billion tomans') | |
trigger = st.button('Predict', on_click=predict) |