Spaces:
Runtime error
Runtime error
code
Browse files- .gitignore +2 -1
- app.py +131 -234
- pre-requirements.txt +1 -0
- requirements.txt +8 -2
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
videos_out/
|
2 |
results/
|
3 |
# Python build
|
@@ -45,4 +46,4 @@ workspace.code-workspace
|
|
45 |
# log files
|
46 |
.pnpm-debug.log
|
47 |
venv/
|
48 |
-
*.db-journal
|
|
|
1 |
+
gradio_cached_examples/
|
2 |
videos_out/
|
3 |
results/
|
4 |
# Python build
|
|
|
46 |
# log files
|
47 |
.pnpm-debug.log
|
48 |
venv/
|
49 |
+
*.db-journal
|
app.py
CHANGED
@@ -1,45 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
-
from difflib import Differ
|
4 |
import ffmpeg
|
5 |
import os
|
6 |
from pathlib import Path
|
7 |
import time
|
8 |
-
import
|
9 |
-
import
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# is cuda available?
|
33 |
-
cuda = torch.device(
|
34 |
-
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
35 |
-
device = 0 if torch.cuda.is_available() else -1
|
36 |
-
speech_recognizer = pipeline(
|
37 |
-
task="automatic-speech-recognition",
|
38 |
-
model=f'{MODEL}',
|
39 |
-
tokenizer=f'{MODEL}',
|
40 |
-
framework="pt",
|
41 |
-
device=device,
|
42 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
videos_out_path = Path("./videos_out")
|
45 |
videos_out_path.mkdir(parents=True, exist_ok=True)
|
@@ -52,124 +53,58 @@ for file in samples_data:
|
|
52 |
SAMPLES.append(sample)
|
53 |
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
|
54 |
|
55 |
-
total_inferences_since_reboot = 415
|
56 |
-
total_cuts_since_reboot = 1539
|
57 |
-
|
58 |
|
59 |
-
async def speech_to_text(
|
60 |
"""
|
61 |
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
|
62 |
|
63 |
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
64 |
"""
|
65 |
-
|
66 |
-
if (
|
67 |
-
raise ValueError("
|
68 |
|
69 |
-
video_path = Path(
|
70 |
try:
|
71 |
# convert video to audio 16k using PIPE to audio_memory
|
72 |
audio_memory, _ = ffmpeg.input(video_path).output(
|
73 |
-
'-', format="wav", ac=1, ar=
|
74 |
except Exception as e:
|
75 |
raise RuntimeError("Error converting video to audio")
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
total_inferences_since_reboot += 1
|
93 |
-
print("\n\ntotal_inferences_since_reboot: ",
|
94 |
-
total_inferences_since_reboot, "\n\n")
|
95 |
-
return (transcription, transcription, timestamps)
|
96 |
-
except Exception as e:
|
97 |
-
print(e)
|
98 |
-
if 'error' in inference_reponse and 'estimated_time' in inference_reponse:
|
99 |
-
wait_time = inference_reponse['estimated_time']
|
100 |
-
print("Waiting for model to load....", wait_time)
|
101 |
-
# wait for loading model
|
102 |
-
# 5 seconds plus for certanty
|
103 |
-
await asyncio.sleep(wait_time + 5.0)
|
104 |
-
elif 'error' in inference_reponse:
|
105 |
-
raise RuntimeError("Error Fetching API",
|
106 |
-
inference_reponse['error'])
|
107 |
-
else:
|
108 |
-
break
|
109 |
-
else:
|
110 |
-
raise RuntimeError(inference_reponse, "Error Fetching API")
|
111 |
-
else:
|
112 |
-
|
113 |
-
try:
|
114 |
-
print(f'Transcribing via local model')
|
115 |
-
output = speech_recognizer(
|
116 |
-
audio_memory, return_timestamps="char", chunk_length_s=10, stride_length_s=(4, 2))
|
117 |
-
|
118 |
-
transcription = output["text"].lower()
|
119 |
-
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0].tolist(), chunk["timestamp"][1].tolist()]
|
120 |
-
for chunk in output['chunks']]
|
121 |
-
total_inferences_since_reboot += 1
|
122 |
-
|
123 |
-
print("\n\ntotal_inferences_since_reboot: ",
|
124 |
-
total_inferences_since_reboot, "\n\n")
|
125 |
-
return (transcription, transcription, timestamps)
|
126 |
-
except Exception as e:
|
127 |
-
raise RuntimeError("Error Running inference with local model", e)
|
128 |
|
129 |
|
130 |
-
async def cut_timestamps_to_video(video_in,
|
131 |
-
|
132 |
-
|
133 |
-
and edit ext cuts video segments into a single video
|
134 |
-
"""
|
135 |
-
global total_cuts_since_reboot
|
136 |
-
|
137 |
-
video_path = Path(video_in)
|
138 |
-
video_file_name = video_path.stem
|
139 |
-
if (video_in == None or text_in == None or transcription == None):
|
140 |
raise ValueError("Inputs undefined")
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
diff_chars = d.compare(transcription, text_in)
|
145 |
-
# remove all text aditions from diff
|
146 |
-
filtered = list(filter(lambda x: x[0] != '+', diff_chars))
|
147 |
-
|
148 |
-
# filter timestamps to be removed
|
149 |
-
# timestamps_to_cut = [b for (a,b) in zip(filtered, timestamps_var) if a[0]== '-' ]
|
150 |
-
# return diff tokes and cutted video!!
|
151 |
-
|
152 |
-
# groupping character timestamps so there are less cuts
|
153 |
-
idx = 0
|
154 |
-
grouped = {}
|
155 |
-
for (a, b) in zip(filtered, timestamps):
|
156 |
-
if a[0] != '-':
|
157 |
-
if idx in grouped:
|
158 |
-
grouped[idx].append(b)
|
159 |
-
else:
|
160 |
-
grouped[idx] = []
|
161 |
-
grouped[idx].append(b)
|
162 |
-
else:
|
163 |
-
idx += 1
|
164 |
|
165 |
-
|
166 |
-
|
|
|
167 |
|
168 |
between_str = '+'.join(
|
169 |
map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))
|
170 |
|
171 |
if timestamps_to_cut:
|
172 |
-
video_file = ffmpeg.input(
|
173 |
video = video_file.video.filter(
|
174 |
"select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
|
175 |
audio = video_file.audio.filter(
|
@@ -179,124 +114,52 @@ async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
|
|
179 |
ffmpeg.concat(video, audio, v=1, a=1).output(
|
180 |
output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
|
181 |
else:
|
182 |
-
output_video =
|
183 |
-
|
184 |
-
tokens = [(token[2:], token[0] if token[0] != " " else None)
|
185 |
-
for token in filtered]
|
186 |
|
187 |
-
|
188 |
-
ping("video_cuts")
|
189 |
-
print("\n\ntotal_cuts_since_reboot: ", total_cuts_since_reboot, "\n\n")
|
190 |
-
return (tokens, output_video)
|
191 |
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
"""
|
197 |
-
payload = json.dumps({
|
198 |
-
"inputs": base64.b64encode(audio_bytes).decode("utf-8"),
|
199 |
-
"parameters": {
|
200 |
-
"return_timestamps": "char",
|
201 |
-
"chunk_length_s": 10,
|
202 |
-
"stride_length_s": [4, 2]
|
203 |
-
},
|
204 |
-
"options": {"use_gpu": False}
|
205 |
-
}).encode("utf-8")
|
206 |
-
async with aiohttp.ClientSession() as session:
|
207 |
-
async with session.post(API_URL, headers=headers, data=payload) as response:
|
208 |
-
print("API Response: ", response.status)
|
209 |
-
if response.headers['Content-Type'] == 'application/json':
|
210 |
-
return await response.json()
|
211 |
-
elif response.headers['Content-Type'] == 'application/octet-stream':
|
212 |
-
return await response.read()
|
213 |
-
elif response.headers['Content-Type'] == 'text/plain':
|
214 |
-
return await response.text()
|
215 |
-
else:
|
216 |
-
raise RuntimeError("Error Fetching API")
|
217 |
-
|
218 |
-
|
219 |
-
def ping(name):
|
220 |
-
url = f'https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}'
|
221 |
-
print("ping: ", url)
|
222 |
-
|
223 |
-
async def req():
|
224 |
-
async with aiohttp.ClientSession() as session:
|
225 |
-
async with session.get(url) as response:
|
226 |
-
print("pong: ", response.status)
|
227 |
-
asyncio.create_task(req())
|
228 |
-
|
229 |
-
|
230 |
-
# ---- Gradio Layout -----
|
231 |
-
video_in = gr.Video(label="Video file")
|
232 |
-
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
|
233 |
-
video_out = gr.Video(label="Video Out")
|
234 |
-
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
|
235 |
-
examples = gr.Dataset(components=[video_in], samples=VIDEOS, type="index")
|
236 |
-
|
237 |
-
css = """
|
238 |
-
#cut_btn, #reset_btn { align-self:stretch; }
|
239 |
-
#\\31 3 { max-width: 540px; }
|
240 |
-
.output-markdown {max-width: 65ch !important;}
|
241 |
-
"""
|
242 |
-
with gr.Blocks(css=css) as demo:
|
243 |
-
transcription_var = gr.Variable()
|
244 |
-
timestamps_var = gr.Variable()
|
245 |
with gr.Row():
|
246 |
with gr.Column():
|
247 |
gr.Markdown("""
|
248 |
-
#
|
249 |
-
|
250 |
-
are made by editing the audio transcription.
|
251 |
Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
|
252 |
-
with
|
253 |
-
you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
|
254 |
""")
|
255 |
|
256 |
-
with gr.Row():
|
257 |
-
|
258 |
-
examples.render()
|
259 |
-
|
260 |
-
def load_example(id):
|
261 |
-
video = SAMPLES[id]['video']
|
262 |
-
transcription = SAMPLES[id]['transcription'].lower()
|
263 |
-
timestamps = SAMPLES[id]['timestamps']
|
264 |
-
|
265 |
-
return (video, transcription, transcription, timestamps)
|
266 |
-
|
267 |
-
examples.click(
|
268 |
-
load_example,
|
269 |
-
inputs=[examples],
|
270 |
-
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
271 |
-
queue=False)
|
272 |
with gr.Row():
|
273 |
with gr.Column():
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
278 |
|
279 |
-
with gr.Row():
|
280 |
-
gr.Markdown("""
|
281 |
-
### Now edit as text
|
282 |
-
After running the video transcription, you can make cuts to the text below (only cuts, not additions!)""")
|
283 |
-
|
284 |
-
with gr.Row():
|
285 |
with gr.Column():
|
286 |
-
text_in.
|
|
|
287 |
with gr.Row():
|
288 |
-
cut_btn = gr.Button("Cut
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
300 |
with gr.Row():
|
301 |
gr.Markdown("""
|
302 |
#### Video Credits
|
@@ -305,6 +168,40 @@ with gr.Blocks(css=css) as demo:
|
|
305 |
1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
|
306 |
1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
|
307 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
demo.queue()
|
309 |
if __name__ == "__main__":
|
310 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
import ffmpeg
|
4 |
import os
|
5 |
from pathlib import Path
|
6 |
import time
|
7 |
+
from transformers import pipeline
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# checkpoint = "openai/whisper-tiny"
|
11 |
+
# checkpoint = "openai/whisper-base"
|
12 |
+
checkpoint = "openai/whisper-small"
|
13 |
+
|
14 |
+
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
|
15 |
+
from transformers import (
|
16 |
+
AutomaticSpeechRecognitionPipeline,
|
17 |
+
WhisperForConditionalGeneration,
|
18 |
+
WhisperProcessor,
|
19 |
+
)
|
20 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
21 |
+
checkpoint).to("cuda").half()
|
22 |
+
processor = WhisperProcessor.from_pretrained(checkpoint)
|
23 |
+
pipe = AutomaticSpeechRecognitionPipeline(
|
24 |
+
model=model,
|
25 |
+
tokenizer=processor.tokenizer,
|
26 |
+
feature_extractor=processor.feature_extractor,
|
27 |
+
batch_size=8,
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
device="cuda:0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
31 |
+
else:
|
32 |
+
pipe = pipeline(model=checkpoint)
|
33 |
+
|
34 |
+
|
35 |
+
# TODO: no longer need to set these manually once the models have been updated on the Hub
|
36 |
+
# whisper-tiny
|
37 |
+
# pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
|
38 |
+
# whisper-base
|
39 |
+
# pipe.model.generation_config.alignment_heads = [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]]
|
40 |
+
# whisper-small
|
41 |
+
pipe.model.generation_config.alignment_heads = [[5, 3], [5, 9], [
|
42 |
+
8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]]
|
43 |
+
|
44 |
|
45 |
videos_out_path = Path("./videos_out")
|
46 |
videos_out_path.mkdir(parents=True, exist_ok=True)
|
|
|
53 |
SAMPLES.append(sample)
|
54 |
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
|
55 |
|
|
|
|
|
|
|
56 |
|
57 |
+
async def speech_to_text(video_in):
|
58 |
"""
|
59 |
Takes a video path to convert to audio, transcribe audio channel to text and char timestamps
|
60 |
|
61 |
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
62 |
"""
|
63 |
+
video_in = video_in[0] if isinstance(video_in, list) else video_in
|
64 |
+
if (video_in == None):
|
65 |
+
raise ValueError("Video input undefined")
|
66 |
|
67 |
+
video_path = Path(video_in.name)
|
68 |
try:
|
69 |
# convert video to audio 16k using PIPE to audio_memory
|
70 |
audio_memory, _ = ffmpeg.input(video_path).output(
|
71 |
+
'-', format="wav", ac=1, ar=pipe.feature_extractor.sampling_rate).overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
|
72 |
except Exception as e:
|
73 |
raise RuntimeError("Error converting video to audio")
|
74 |
|
75 |
+
try:
|
76 |
+
print(f'Transcribing via local model')
|
77 |
+
output = pipe(audio_memory, chunk_length_s=10,
|
78 |
+
stride_length_s=[4, 2], return_timestamps="word")
|
79 |
+
transcription = output["text"]
|
80 |
+
chunks = output["chunks"]
|
81 |
+
timestamps_var = [{"word": chunk["text"], "timestamp":(
|
82 |
+
chunk["timestamp"][0], chunk["timestamp"][1]), "state": True} for chunk in chunks]
|
83 |
+
|
84 |
+
words = [(word['word'], '+' if word['state'] else '-')
|
85 |
+
for word in timestamps_var]
|
86 |
+
return (words, transcription, timestamps_var, video_in.name)
|
87 |
+
except Exception as e:
|
88 |
+
raise RuntimeError("Error Running inference with local model", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
|
91 |
+
async def cut_timestamps_to_video(video_in, timestamps_var):
|
92 |
+
video_in = video_in[0] if isinstance(video_in, list) else video_in
|
93 |
+
if (video_in == None or timestamps_var == None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
raise ValueError("Inputs undefined")
|
95 |
|
96 |
+
video_path = Path(video_in.name)
|
97 |
+
video_file_name = video_path.stem
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
timestamps_to_cut = [
|
100 |
+
(timestamps_var[i]['timestamp'][0], timestamps_var[i]['timestamp'][1])
|
101 |
+
for i in range(len(timestamps_var)) if timestamps_var[i]['state']]
|
102 |
|
103 |
between_str = '+'.join(
|
104 |
map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))
|
105 |
|
106 |
if timestamps_to_cut:
|
107 |
+
video_file = ffmpeg.input(video_path)
|
108 |
video = video_file.video.filter(
|
109 |
"select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
|
110 |
audio = video_file.audio.filter(
|
|
|
114 |
ffmpeg.concat(video, audio, v=1, a=1).output(
|
115 |
output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
|
116 |
else:
|
117 |
+
output_video = video_path
|
|
|
|
|
|
|
118 |
|
119 |
+
return output_video
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
+
with gr.Blocks() as demo:
|
123 |
+
transcription_var = gr.State()
|
124 |
+
timestamps_var = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Row():
|
126 |
with gr.Column():
|
127 |
gr.Markdown("""
|
128 |
+
# Whisper: Word-Level Video Trimming
|
129 |
+
Quick edit a video by trimming out words.
|
|
|
130 |
Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
|
131 |
+
with [Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)
|
|
|
132 |
""")
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
+
file_upload = gr.File(
|
137 |
+
label="Upload Video File", file_count=1, scale=1)
|
138 |
+
video_preview = gr.Video(
|
139 |
+
label="Video Preview", scale=3, intervactive=False)
|
140 |
+
# with gr.Row():
|
141 |
+
# transcribe_btn = gr.Button(
|
142 |
+
# "Transcribe Audio")
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Column():
|
145 |
+
text_in = gr.HighlightedText(
|
146 |
+
label="Transcription", combine_adjacent=False, show_legend=True, color_map={"+": "green", "-": "red"})
|
147 |
with gr.Row():
|
148 |
+
cut_btn = gr.Button("Cut Video")
|
149 |
+
select_all_words = gr.Button("Select All Words")
|
150 |
+
reset_words = gr.Button("Reset Words")
|
151 |
+
video_out = gr.Video(label="Video Out")
|
152 |
+
with gr.Row():
|
153 |
+
gr.Examples(
|
154 |
+
fn=speech_to_text,
|
155 |
+
examples=["./examples/ShiaLaBeouf.mp4",
|
156 |
+
"./examples/zuckyuval.mp4",
|
157 |
+
"./examples/cooking.mp4"],
|
158 |
+
inputs=[file_upload],
|
159 |
+
outputs=[text_in, transcription_var,
|
160 |
+
timestamps_var, video_preview],
|
161 |
+
cache_examples=True)
|
162 |
+
|
163 |
with gr.Row():
|
164 |
gr.Markdown("""
|
165 |
#### Video Credits
|
|
|
168 |
1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
|
169 |
1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
|
170 |
""")
|
171 |
+
|
172 |
+
def select_text(evt: gr.SelectData, timestamps_var):
|
173 |
+
index = evt.index
|
174 |
+
timestamps_var[index]['state'] = not timestamps_var[index]['state']
|
175 |
+
words = [(word['word'], '+' if word['state'] else '-')
|
176 |
+
for word in timestamps_var]
|
177 |
+
return timestamps_var, words
|
178 |
+
|
179 |
+
def words_selection(timestamps_var, reset=False):
|
180 |
+
if reset:
|
181 |
+
for word in timestamps_var:
|
182 |
+
word['state'] = True
|
183 |
+
else:
|
184 |
+
# reverse the state of all words
|
185 |
+
for word in timestamps_var:
|
186 |
+
word['state'] = False
|
187 |
+
|
188 |
+
words = [(word['word'], '+' if word['state'] else '-')
|
189 |
+
for word in timestamps_var]
|
190 |
+
return timestamps_var, words
|
191 |
+
|
192 |
+
file_upload.upload(speech_to_text, inputs=[file_upload], outputs=[
|
193 |
+
text_in, transcription_var, timestamps_var, video_preview])
|
194 |
+
select_all_words.click(words_selection, inputs=[timestamps_var], outputs=[
|
195 |
+
timestamps_var, text_in], queue=False, show_progress=False)
|
196 |
+
reset_words.click(lambda x: words_selection(x, True), inputs=[timestamps_var], outputs=[
|
197 |
+
timestamps_var, text_in], queue=False, show_progress=False)
|
198 |
+
text_in.select(select_text, inputs=timestamps_var,
|
199 |
+
outputs=[timestamps_var, text_in], queue=False, show_progress=False)
|
200 |
+
# transcribe_btn.click(speech_to_text, inputs=[file_upload], outputs=[
|
201 |
+
# text_in, transcription_var, timestamps_var, video_preview])
|
202 |
+
cut_btn.click(cut_timestamps_to_video, [
|
203 |
+
file_upload, timestamps_var], [video_out])
|
204 |
+
|
205 |
demo.queue()
|
206 |
if __name__ == "__main__":
|
207 |
demo.launch(debug=True)
|
pre-requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
requirements.txt
CHANGED
@@ -1,6 +1,12 @@
|
|
|
|
1 |
torch
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
datasets
|
5 |
librosa
|
6 |
ffmpeg-python
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git
|
2 |
torch
|
3 |
+
torchaudio
|
4 |
+
soundfile
|
5 |
+
librosa
|
6 |
+
moviepy
|
7 |
+
matplotlib
|
8 |
+
pillow
|
9 |
+
gradio
|
10 |
datasets
|
11 |
librosa
|
12 |
ffmpeg-python
|