gradio-lite-candle-SAM / samWorker.js
radames's picture
first
2cfd6b4
raw
history blame
5.32 kB
//load the candle SAM Model wasm module
import init, { Model } from "./sam/m.js";
async function fetchArrayBuffer(url, cacheModel = true) {
if (!cacheModel)
return new Uint8Array(await (await fetch(url)).arrayBuffer());
const cacheName = "sam-candle-cache";
const cache = await caches.open(cacheName);
const cachedResponse = await cache.match(url);
if (cachedResponse) {
const data = await cachedResponse.arrayBuffer();
return new Uint8Array(data);
}
const res = await fetch(url, { cache: "force-cache" });
cache.put(url, res.clone());
return new Uint8Array(await res.arrayBuffer());
}
class SAMModel {
static instance = {};
// keep current image embeddings state
static imageArrayHash = {};
// Add a new property to hold the current modelID
static currentModelID = null;
static async getInstance(modelURL, modelID) {
if (!this.instance[modelID]) {
await init();
self.postMessage({
status: "loading",
message: `Loading Model ${modelID}`,
});
const weightsArrayU8 = await fetchArrayBuffer(modelURL);
this.instance[modelID] = new Model(
weightsArrayU8,
/tiny|mobile/.test(modelID)
);
} else {
self.postMessage({ status: "loading", message: "Model Already Loaded" });
}
// Set the current modelID to the modelID that was passed in
this.currentModelID = modelID;
return this.instance[modelID];
}
// Remove the modelID parameter from setImageEmbeddings
static setImageEmbeddings(imageArrayU8) {
// check if image embeddings are already set for this image and model
const imageArrayHash = this.getSimpleHash(imageArrayU8);
if (
this.imageArrayHash[this.currentModelID] === imageArrayHash &&
this.instance[this.currentModelID]
) {
self.postMessage({
status: "embedding",
message: "Embeddings Already Set",
});
return;
}
this.imageArrayHash[this.currentModelID] = imageArrayHash;
this.instance[this.currentModelID].set_image_embeddings(imageArrayU8);
self.postMessage({ status: "embedding", message: "Embeddings Set" });
}
static getSimpleHash(imageArrayU8) {
// get simple hash of imageArrayU8
let imageArrayHash = 0;
for (let i = 0; i < imageArrayU8.length; i += 100) {
imageArrayHash ^= imageArrayU8[i];
}
return imageArrayHash.toString(16);
}
}
async function createImageCanvas(
{ mask_shape, mask_data }, // mask
{ original_width, original_height, width, height }, // original image
imageURL
) {
const [_, __, shape_width, shape_height] = mask_shape;
const maskCanvas = new OffscreenCanvas(shape_width, shape_height); // canvas for mask
const maskCtx = maskCanvas.getContext("2d");
const canvas = new OffscreenCanvas(original_width, original_height); // canvas for creating mask with original image size
const ctx = canvas.getContext("2d");
const imageData = maskCtx.createImageData(
maskCanvas.width,
maskCanvas.height
);
const data = imageData.data;
for (let p = 0; p < data.length; p += 4) {
data[p] = 0;
data[p + 1] = 0;
data[p + 2] = 0;
data[p + 3] = mask_data[p / 4] * 255;
}
maskCtx.putImageData(imageData, 0, 0);
let sx, sy;
if (original_height < original_width) {
sy = original_height / original_width;
sx = 1;
} else {
sy = 1;
sx = original_width / original_height;
}
ctx.drawImage(
maskCanvas,
0,
0,
maskCanvas.width * sx,
maskCanvas.height * sy,
0,
0,
original_width,
original_height
);
const canvasCut = new OffscreenCanvas(width, height); // canvas for cut image
const canvasCutctx = canvasCut.getContext("2d");
// draw imageURL on canvasCut
const originalImage = await createImageBitmap(await fetch(imageURL).then((r) => r.blob()));
canvasCut.width = originalImage.width;
canvasCut.height = originalImage.height;
canvasCutctx.drawImage(canvas, 0, 0);
canvasCutctx.globalCompositeOperation = "source-in";
canvasCutctx.drawImage(originalImage, 0, 0);
const blob = await canvasCut.convertToBlob();
return URL.createObjectURL(blob);
}
self.addEventListener("message", async (event) => {
const { modelURL, modelID, imageURL, points } = event.data;
try {
self.postMessage({ status: "loading", message: "Starting SAM" });
const sam = await SAMModel.getInstance(modelURL, modelID);
self.postMessage({ status: "loading", message: "Loading Image" });
const imageArrayU8 = await fetchArrayBuffer(imageURL, false);
self.postMessage({ status: "embedding", message: "Creating Embeddings" });
SAMModel.setImageEmbeddings(imageArrayU8);
if (!points) {
// no points only do the embeddings
self.postMessage({
status: "complete-embedding",
message: "Embeddings Complete",
});
return;
}
self.postMessage({ status: "segmenting", message: "Segmenting" });
const { mask, image } = sam.mask_for_point({ points });
const maskDataURL = await createImageCanvas(mask, image, imageURL);
// Send the segment back to the main thread as JSON
self.postMessage({
status: "complete",
message: "Segmentation Complete",
output: { maskURL: maskDataURL },
});
} catch (e) {
self.postMessage({ error: e });
}
});