Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
|
| 7 |
+
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
| 8 |
+
|
| 9 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 10 |
+
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 11 |
+
|
| 12 |
+
def write_depth(depth, bits):
|
| 13 |
+
depth_min = depth.min()
|
| 14 |
+
depth_max = depth.max()
|
| 15 |
+
|
| 16 |
+
max_val = (2 ** (8 * bits)) - 1
|
| 17 |
+
|
| 18 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
| 19 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
| 20 |
+
else:
|
| 21 |
+
out = np.zeros(depth.shape, dtype=depth.dtype)
|
| 22 |
+
|
| 23 |
+
cv2.imwrite("result.png", out.astype("uint16"), [cv2.IMWRITE_PNG_COMPRESSION, 0])
|
| 24 |
+
|
| 25 |
+
return
|
| 26 |
+
|
| 27 |
+
def process_image(image):
|
| 28 |
+
# prepare image for the model
|
| 29 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
| 30 |
+
|
| 31 |
+
# forward pass
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = model(**encoding)
|
| 34 |
+
|
| 35 |
+
predicted_depth = outputs.predicted_depth
|
| 36 |
+
|
| 37 |
+
# interpolate to original size
|
| 38 |
+
predicted_depth = torch.nn.functional.interpolate(
|
| 39 |
+
predicted_depth.unsqueeze(1),
|
| 40 |
+
size=image.size[::-1],
|
| 41 |
+
mode="bicubic",
|
| 42 |
+
align_corners=False,
|
| 43 |
+
)
|
| 44 |
+
prediction = prediction.squeeze().cpu().numpy()
|
| 45 |
+
|
| 46 |
+
# write predicted depth to file
|
| 47 |
+
write_depth(prediction, bits=2)
|
| 48 |
+
|
| 49 |
+
result = Image.open("result.png")
|
| 50 |
+
|
| 51 |
+
return result
|
| 52 |
+
|
| 53 |
+
title = "Interactive demo: DPT"
|
| 54 |
+
description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation."
|
| 55 |
+
examples =[['cats.jpg']]
|
| 56 |
+
|
| 57 |
+
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
| 58 |
+
#css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
|
| 59 |
+
# css = ".output_image, .input_image {height: 600px !important}"
|
| 60 |
+
|
| 61 |
+
iface = gr.Interface(fn=process_image,
|
| 62 |
+
inputs=gr.inputs.Image(type="pil"),
|
| 63 |
+
outputs=gr.outputs.Image(type="pil", label="predicted depth"),
|
| 64 |
+
title=title,
|
| 65 |
+
description=description,
|
| 66 |
+
examples=examples,
|
| 67 |
+
css=css,
|
| 68 |
+
enable_queue=True)
|
| 69 |
+
iface.launch(debug=True)
|