Spaces:
Runtime error
Runtime error
single transform function
Browse files- interface/app.py +13 -36
- interface/model_loader.py +189 -240
interface/app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
import sys
|
|
|
3 |
sys.path.append(".")
|
4 |
sys.path.append("..")
|
5 |
from model_loader import Model
|
@@ -34,7 +35,7 @@ def random_sample(model_name: str):
|
|
34 |
return pil_img, model_name, latents
|
35 |
|
36 |
|
37 |
-
def
|
38 |
model = models[model_state]
|
39 |
dx = dx
|
40 |
dy = dy
|
@@ -42,34 +43,10 @@ def zoom(model_state, latents_state, dx=0, dy=0, dz=0, sxsy=[128, 128]):
|
|
42 |
sx = sxsy[0]
|
43 |
sy = sxsy[1]
|
44 |
stop_points = []
|
45 |
-
img, latents_state = model.zoom(
|
46 |
-
latents_state, dz, sxsy=[sx, sy], stop_points=stop_points
|
47 |
-
) # dz, sxsy=[sx, sy], stop_points=stop_points)
|
48 |
-
pil_img = cv_to_pil(img)
|
49 |
-
return pil_img, latents_state
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
model = models[model_state]
|
54 |
-
|
55 |
-
dx = dx
|
56 |
-
dy = dy
|
57 |
-
dz = dz
|
58 |
-
sx = sxsy[0]
|
59 |
-
sy = sxsy[1]
|
60 |
-
stop_points = []
|
61 |
-
zi = False
|
62 |
-
zo = False
|
63 |
-
|
64 |
-
img, latents_state = model.translate(
|
65 |
-
latents_state,
|
66 |
-
[dx, dy],
|
67 |
-
sxsy=[sx, sy],
|
68 |
-
stop_points=stop_points,
|
69 |
-
zoom_in=zi,
|
70 |
-
zoom_out=zo,
|
71 |
)
|
72 |
-
|
73 |
pil_img = cv_to_pil(img)
|
74 |
return pil_img, latents_state
|
75 |
|
@@ -109,6 +86,7 @@ with gr.Blocks() as block:
|
|
109 |
with gr.Row():
|
110 |
button = gr.Button("Random sample")
|
111 |
reset_btn = gr.Button("Reset")
|
|
|
112 |
|
113 |
dx = gr.Slider(
|
114 |
minimum=-256, maximum=256, step_size=0.1, label="dx", value=0.0
|
@@ -117,14 +95,13 @@ with gr.Blocks() as block:
|
|
117 |
minimum=-256, maximum=256, step_size=0.1, label="dy", value=0.0
|
118 |
)
|
119 |
dz = gr.Slider(
|
120 |
-
minimum=-
|
121 |
)
|
122 |
-
|
123 |
-
with gr.Row():
|
124 |
-
change_style_bt = gr.Button("Change style")
|
125 |
|
126 |
with gr.Column():
|
127 |
-
|
|
|
128 |
image.select(image_click, inputs=None, outputs=sxsy)
|
129 |
button.click(
|
130 |
random_sample, inputs=[model_name], outputs=[image, model_state, latents_state]
|
@@ -141,19 +118,19 @@ with gr.Blocks() as block:
|
|
141 |
outputs=[image, latents_state],
|
142 |
)
|
143 |
dx.change(
|
144 |
-
|
145 |
inputs=[model_state, latents_state, dx, dy, dz, sxsy],
|
146 |
outputs=[image, latents_state],
|
147 |
show_progress=False,
|
148 |
)
|
149 |
dy.change(
|
150 |
-
|
151 |
inputs=[model_state, latents_state, dx, dy, dz, sxsy],
|
152 |
outputs=[image, latents_state],
|
153 |
show_progress=False,
|
154 |
)
|
155 |
dz.change(
|
156 |
-
|
157 |
inputs=[model_state, latents_state, dx, dy, dz, sxsy],
|
158 |
outputs=[image, latents_state],
|
159 |
show_progress=False,
|
|
|
1 |
import gradio as gr
|
2 |
+
import sys
|
3 |
+
|
4 |
sys.path.append(".")
|
5 |
sys.path.append("..")
|
6 |
from model_loader import Model
|
|
|
35 |
return pil_img, model_name, latents
|
36 |
|
37 |
|
38 |
+
def transform(model_state, latents_state, dx=0, dy=0, dz=0, sxsy=[128, 128]):
|
39 |
model = models[model_state]
|
40 |
dx = dx
|
41 |
dy = dy
|
|
|
43 |
sx = sxsy[0]
|
44 |
sy = sxsy[1]
|
45 |
stop_points = []
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
img, latents_state = model.transform(
|
48 |
+
latents_state, dz, dxy=[dx, dy], sxsy=[sx, sy], stop_points=stop_points
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
|
|
50 |
pil_img = cv_to_pil(img)
|
51 |
return pil_img, latents_state
|
52 |
|
|
|
86 |
with gr.Row():
|
87 |
button = gr.Button("Random sample")
|
88 |
reset_btn = gr.Button("Reset")
|
89 |
+
change_style_bt = gr.Button("Change style")
|
90 |
|
91 |
dx = gr.Slider(
|
92 |
minimum=-256, maximum=256, step_size=0.1, label="dx", value=0.0
|
|
|
95 |
minimum=-256, maximum=256, step_size=0.1, label="dy", value=0.0
|
96 |
)
|
97 |
dz = gr.Slider(
|
98 |
+
minimum=-5, maximum=5, step_size=0.01, label="dz", value=0.0
|
99 |
)
|
100 |
+
image = gr.Image(type="pil", label="").style(height=500)
|
|
|
|
|
101 |
|
102 |
with gr.Column():
|
103 |
+
html = gr.HTML(label="output")
|
104 |
+
|
105 |
image.select(image_click, inputs=None, outputs=sxsy)
|
106 |
button.click(
|
107 |
random_sample, inputs=[model_name], outputs=[image, model_state, latents_state]
|
|
|
118 |
outputs=[image, latents_state],
|
119 |
)
|
120 |
dx.change(
|
121 |
+
transform,
|
122 |
inputs=[model_state, latents_state, dx, dy, dz, sxsy],
|
123 |
outputs=[image, latents_state],
|
124 |
show_progress=False,
|
125 |
)
|
126 |
dy.change(
|
127 |
+
transform,
|
128 |
inputs=[model_state, latents_state, dx, dy, dz, sxsy],
|
129 |
outputs=[image, latents_state],
|
130 |
show_progress=False,
|
131 |
)
|
132 |
dz.change(
|
133 |
+
transform,
|
134 |
inputs=[model_state, latents_state, dx, dy, dz, sxsy],
|
135 |
outputs=[image, latents_state],
|
136 |
show_progress=False,
|
interface/model_loader.py
CHANGED
@@ -1,240 +1,189 @@
|
|
1 |
-
import os
|
2 |
-
from argparse import Namespace
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
|
6 |
-
from models.StyleGANControler import StyleGANControler
|
7 |
-
|
8 |
-
|
9 |
-
class Model:
|
10 |
-
def __init__(
|
11 |
-
self, checkpoint_path, truncation=0.5, use_average_code_as_input=False
|
12 |
-
):
|
13 |
-
self.truncation = truncation
|
14 |
-
self.use_average_code_as_input = use_average_code_as_input
|
15 |
-
ckpt = torch.load(checkpoint_path, map_location="cpu")
|
16 |
-
opts = ckpt["opts"]
|
17 |
-
opts["checkpoint_path"] = checkpoint_path
|
18 |
-
self.opts = Namespace(**ckpt["opts"])
|
19 |
-
self.net = StyleGANControler(self.opts)
|
20 |
-
self.net.eval()
|
21 |
-
self.net.cuda()
|
22 |
-
self.target_layers = [0, 1, 2, 3, 4, 5]
|
23 |
-
|
24 |
-
def random_sample(self):
|
25 |
-
z1 = torch.randn(1, 512).to("cuda")
|
26 |
-
x1, w1, f1 = self.net.decoder(
|
27 |
-
[z1],
|
28 |
-
input_is_latent=False,
|
29 |
-
randomize_noise=False,
|
30 |
-
return_feature_map=True,
|
31 |
-
return_latents=True,
|
32 |
-
truncation=self.truncation,
|
33 |
-
truncation_latent=self.net.latent_avg[0],
|
34 |
-
)
|
35 |
-
w1_initial = w1.clone()
|
36 |
-
x1 = self.net.face_pool(x1)
|
37 |
-
image = (
|
38 |
-
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
39 |
-
)
|
40 |
-
return (
|
41 |
-
image,
|
42 |
-
{
|
43 |
-
"w1": w1.cpu().detach().numpy(),
|
44 |
-
"w1_initial": w1_initial.cpu().detach().numpy(),
|
45 |
-
},
|
46 |
-
) # return latent vector along with the image
|
47 |
-
|
48 |
-
def latents_to_tensor(self, latents):
|
49 |
-
w1 = latents["w1"]
|
50 |
-
w1_initial = latents["w1_initial"]
|
51 |
-
|
52 |
-
w1 = torch.tensor(w1).to("cuda")
|
53 |
-
w1_initial = torch.tensor(w1_initial).to("cuda")
|
54 |
-
|
55 |
-
x1, w1, f1 = self.net.decoder(
|
56 |
-
[w1],
|
57 |
-
input_is_latent=True,
|
58 |
-
randomize_noise=False,
|
59 |
-
return_feature_map=True,
|
60 |
-
return_latents=True,
|
61 |
-
)
|
62 |
-
x1, w1_initial, f1 = self.net.decoder(
|
63 |
-
[w1_initial],
|
64 |
-
input_is_latent=True,
|
65 |
-
randomize_noise=False,
|
66 |
-
return_feature_map=True,
|
67 |
-
return_latents=True,
|
68 |
-
)
|
69 |
-
|
70 |
-
return (w1, w1_initial, f1)
|
71 |
-
|
72 |
-
def
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
result = (
|
181 |
-
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
182 |
-
)
|
183 |
-
return (
|
184 |
-
result,
|
185 |
-
{
|
186 |
-
"w1":
|
187 |
-
"w1_initial":
|
188 |
-
},
|
189 |
-
)
|
190 |
-
|
191 |
-
def change_style(self, latents):
|
192 |
-
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
193 |
-
w1 = w1_initial.clone()
|
194 |
-
|
195 |
-
z1 = torch.randn(1, 512).to("cuda")
|
196 |
-
x1, w2 = self.net.decoder(
|
197 |
-
[z1],
|
198 |
-
input_is_latent=False,
|
199 |
-
randomize_noise=False,
|
200 |
-
return_latents=True,
|
201 |
-
truncation=self.truncation,
|
202 |
-
truncation_latent=self.net.latent_avg[0],
|
203 |
-
)
|
204 |
-
w1[:, 6:] = w2.detach()[:, 0]
|
205 |
-
x1, w1_new = self.net.decoder(
|
206 |
-
[w1],
|
207 |
-
input_is_latent=True,
|
208 |
-
randomize_noise=False,
|
209 |
-
return_latents=True,
|
210 |
-
)
|
211 |
-
result = (
|
212 |
-
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
213 |
-
)
|
214 |
-
return (
|
215 |
-
result,
|
216 |
-
{
|
217 |
-
"w1": w1_new.cpu().detach().numpy(),
|
218 |
-
"w1_initial": w1_new.cpu().detach().numpy(),
|
219 |
-
},
|
220 |
-
)
|
221 |
-
|
222 |
-
def reset(self, latents):
|
223 |
-
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
224 |
-
x1, w1_new, f1 = self.net.decoder(
|
225 |
-
[w1_initial],
|
226 |
-
input_is_latent=True,
|
227 |
-
randomize_noise=False,
|
228 |
-
return_feature_map=True,
|
229 |
-
return_latents=True,
|
230 |
-
)
|
231 |
-
result = (
|
232 |
-
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
233 |
-
)
|
234 |
-
return (
|
235 |
-
result,
|
236 |
-
{
|
237 |
-
"w1": w1_new.cpu().detach().numpy(),
|
238 |
-
"w1_initial": w1_new.cpu().detach().numpy(),
|
239 |
-
},
|
240 |
-
)
|
|
|
1 |
+
import os
|
2 |
+
from argparse import Namespace
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from models.StyleGANControler import StyleGANControler
|
7 |
+
|
8 |
+
|
9 |
+
class Model:
|
10 |
+
def __init__(
|
11 |
+
self, checkpoint_path, truncation=0.5, use_average_code_as_input=False
|
12 |
+
):
|
13 |
+
self.truncation = truncation
|
14 |
+
self.use_average_code_as_input = use_average_code_as_input
|
15 |
+
ckpt = torch.load(checkpoint_path, map_location="cpu")
|
16 |
+
opts = ckpt["opts"]
|
17 |
+
opts["checkpoint_path"] = checkpoint_path
|
18 |
+
self.opts = Namespace(**ckpt["opts"])
|
19 |
+
self.net = StyleGANControler(self.opts)
|
20 |
+
self.net.eval()
|
21 |
+
self.net.cuda()
|
22 |
+
self.target_layers = [0, 1, 2, 3, 4, 5]
|
23 |
+
|
24 |
+
def random_sample(self):
|
25 |
+
z1 = torch.randn(1, 512).to("cuda")
|
26 |
+
x1, w1, f1 = self.net.decoder(
|
27 |
+
[z1],
|
28 |
+
input_is_latent=False,
|
29 |
+
randomize_noise=False,
|
30 |
+
return_feature_map=True,
|
31 |
+
return_latents=True,
|
32 |
+
truncation=self.truncation,
|
33 |
+
truncation_latent=self.net.latent_avg[0],
|
34 |
+
)
|
35 |
+
w1_initial = w1.clone()
|
36 |
+
x1 = self.net.face_pool(x1)
|
37 |
+
image = (
|
38 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
39 |
+
)
|
40 |
+
return (
|
41 |
+
image,
|
42 |
+
{
|
43 |
+
"w1": w1.cpu().detach().numpy(),
|
44 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
45 |
+
},
|
46 |
+
) # return latent vector along with the image
|
47 |
+
|
48 |
+
def latents_to_tensor(self, latents):
|
49 |
+
w1 = latents["w1"]
|
50 |
+
w1_initial = latents["w1_initial"]
|
51 |
+
|
52 |
+
w1 = torch.tensor(w1).to("cuda")
|
53 |
+
w1_initial = torch.tensor(w1_initial).to("cuda")
|
54 |
+
|
55 |
+
x1, w1, f1 = self.net.decoder(
|
56 |
+
[w1],
|
57 |
+
input_is_latent=True,
|
58 |
+
randomize_noise=False,
|
59 |
+
return_feature_map=True,
|
60 |
+
return_latents=True,
|
61 |
+
)
|
62 |
+
x1, w1_initial, f1 = self.net.decoder(
|
63 |
+
[w1_initial],
|
64 |
+
input_is_latent=True,
|
65 |
+
randomize_noise=False,
|
66 |
+
return_feature_map=True,
|
67 |
+
return_latents=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
return (w1, w1_initial, f1)
|
71 |
+
|
72 |
+
def transform(
|
73 |
+
self,
|
74 |
+
latents,
|
75 |
+
dz,
|
76 |
+
dxy,
|
77 |
+
sxsy=[0, 0],
|
78 |
+
stop_points=[],
|
79 |
+
zoom_in=False,
|
80 |
+
zoom_out=False,
|
81 |
+
):
|
82 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
83 |
+
w1 = w1_initial.clone()
|
84 |
+
|
85 |
+
dxyz = np.array([dxy[0], dxy[1], dz], dtype=np.float32)
|
86 |
+
dxy_norm = np.linalg.norm(dxyz[:2], ord=2)
|
87 |
+
dxyz[:2] = dxyz[:2] / dxy_norm
|
88 |
+
vec_num = dxy_norm / 10
|
89 |
+
|
90 |
+
x = torch.from_numpy(np.array([[dxyz]], dtype=np.float32)).cuda()
|
91 |
+
f1 = torch.nn.functional.interpolate(f1, (256, 256))
|
92 |
+
y = f1[:, :, sxsy[1], sxsy[0]].unsqueeze(0)
|
93 |
+
|
94 |
+
if len(stop_points) > 0:
|
95 |
+
x = torch.cat(
|
96 |
+
[x, torch.zeros(x.shape[0], len(stop_points), x.shape[2]).cuda()], dim=1
|
97 |
+
)
|
98 |
+
tmp = []
|
99 |
+
for sp in stop_points:
|
100 |
+
tmp.append(f1[:, :, sp[1], sp[0]].unsqueeze(1))
|
101 |
+
y = torch.cat([y, torch.cat(tmp, dim=1)], dim=1)
|
102 |
+
|
103 |
+
if not self.use_average_code_as_input:
|
104 |
+
w_hat = self.net.encoder(
|
105 |
+
w1[:, self.target_layers].detach(),
|
106 |
+
x.detach(),
|
107 |
+
y.detach(),
|
108 |
+
alpha=vec_num,
|
109 |
+
)
|
110 |
+
w1 = w1.clone()
|
111 |
+
w1[:, self.target_layers] = w_hat
|
112 |
+
else:
|
113 |
+
w_hat = self.net.encoder(
|
114 |
+
self.net.latent_avg.unsqueeze(0)[:, self.target_layers].detach(),
|
115 |
+
x.detach(),
|
116 |
+
y.detach(),
|
117 |
+
alpha=vec_num,
|
118 |
+
)
|
119 |
+
w1 = w1.clone()
|
120 |
+
w1[:, self.target_layers] = (
|
121 |
+
w1.clone()[:, self.target_layers]
|
122 |
+
+ w_hat
|
123 |
+
- self.net.latent_avg.unsqueeze(0)[:, self.target_layers]
|
124 |
+
)
|
125 |
+
|
126 |
+
x1, _ = self.net.decoder([w1], input_is_latent=True, randomize_noise=False)
|
127 |
+
|
128 |
+
x1 = self.net.face_pool(x1)
|
129 |
+
result = (
|
130 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
131 |
+
)
|
132 |
+
return (
|
133 |
+
result,
|
134 |
+
{
|
135 |
+
"w1": w1.cpu().detach().numpy(),
|
136 |
+
"w1_initial": w1_initial.cpu().detach().numpy(),
|
137 |
+
},
|
138 |
+
)
|
139 |
+
|
140 |
+
def change_style(self, latents):
|
141 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
142 |
+
w1 = w1_initial.clone()
|
143 |
+
|
144 |
+
z1 = torch.randn(1, 512).to("cuda")
|
145 |
+
x1, w2 = self.net.decoder(
|
146 |
+
[z1],
|
147 |
+
input_is_latent=False,
|
148 |
+
randomize_noise=False,
|
149 |
+
return_latents=True,
|
150 |
+
truncation=self.truncation,
|
151 |
+
truncation_latent=self.net.latent_avg[0],
|
152 |
+
)
|
153 |
+
w1[:, 6:] = w2.detach()[:, 0]
|
154 |
+
x1, w1_new = self.net.decoder(
|
155 |
+
[w1],
|
156 |
+
input_is_latent=True,
|
157 |
+
randomize_noise=False,
|
158 |
+
return_latents=True,
|
159 |
+
)
|
160 |
+
result = (
|
161 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
162 |
+
)
|
163 |
+
return (
|
164 |
+
result,
|
165 |
+
{
|
166 |
+
"w1": w1_new.cpu().detach().numpy(),
|
167 |
+
"w1_initial": w1_new.cpu().detach().numpy(),
|
168 |
+
},
|
169 |
+
)
|
170 |
+
|
171 |
+
def reset(self, latents):
|
172 |
+
w1, w1_initial, f1 = self.latents_to_tensor(latents)
|
173 |
+
x1, w1_new, f1 = self.net.decoder(
|
174 |
+
[w1_initial],
|
175 |
+
input_is_latent=True,
|
176 |
+
randomize_noise=False,
|
177 |
+
return_feature_map=True,
|
178 |
+
return_latents=True,
|
179 |
+
)
|
180 |
+
result = (
|
181 |
+
((x1.detach()[0].permute(1, 2, 0) + 1.0) * 127.5).cpu().numpy()[:, :, ::-1]
|
182 |
+
)
|
183 |
+
return (
|
184 |
+
result,
|
185 |
+
{
|
186 |
+
"w1": w1_new.cpu().detach().numpy(),
|
187 |
+
"w1_initial": w1_new.cpu().detach().numpy(),
|
188 |
+
},
|
189 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|