Spaces:
Runtime error
Runtime error
import os | |
import math, random | |
import numpy as np | |
import matplotlib | |
import matplotlib.pyplot as plt | |
matplotlib.use('Agg') | |
import torch | |
from torch import nn | |
from torch.utils.tensorboard import SummaryWriter | |
import torch.nn.functional as F | |
from utils import common | |
from criteria.lpips.lpips import LPIPS | |
from models.StyleGANControler import StyleGANControler | |
from training.ranger import Ranger | |
from expansion.submission import Expansion | |
from expansion.utils.flowlib import point_vec | |
class Coach: | |
def __init__(self, opts): | |
self.opts = opts | |
if self.opts.checkpoint_path is None: | |
self.global_step = 0 | |
else: | |
self.global_step = int(os.path.splitext(os.path.basename(self.opts.checkpoint_path))[0].split('_')[-1]) | |
self.device = 'cuda:0' # TODO: Allow multiple GPU? currently using CUDA_VISIBLE_DEVICES | |
self.opts.device = self.device | |
# Initialize network | |
self.net = StyleGANControler(self.opts).to(self.device) | |
# Initialize loss | |
if self.opts.lpips_lambda > 0: | |
self.lpips_loss = LPIPS(net_type='alex').to(self.device).eval() | |
self.mse_loss = nn.MSELoss().to(self.device).eval() | |
# Initialize optimizer | |
self.optimizer = self.configure_optimizers() | |
# Initialize logger | |
log_dir = os.path.join(opts.exp_dir, 'logs') | |
os.makedirs(log_dir, exist_ok=True) | |
self.logger = SummaryWriter(log_dir=log_dir) | |
# Initialize checkpoint dir | |
self.checkpoint_dir = os.path.join(opts.exp_dir, 'checkpoints') | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.best_val_loss = None | |
if self.opts.save_interval is None: | |
self.opts.save_interval = self.opts.max_steps | |
# Initialize optical flow estimator | |
self.ex = Expansion() | |
# Set flow normalization values | |
if 'ffhq' in self.opts.stylegan_weights: | |
self.sigma_f = 4 | |
self.sigma_e = 0.02 | |
elif 'car' in self.opts.stylegan_weights: | |
self.sigma_f = 5 | |
self.sigma_e = 0.03 | |
elif 'cat' in self.opts.stylegan_weights: | |
self.sigma_f = 12 | |
self.sigma_e = 0.04 | |
elif 'church' in self.opts.stylegan_weights: | |
self.sigma_f = 8 | |
self.sigma_e = 0.02 | |
elif 'anime' in self.opts.stylegan_weights: | |
self.sigma_f = 7 | |
self.sigma_e = 0.025 | |
def train(self, truncation = 0.3, sigma = 0.1, target_layers = [0,1,2,3,4,5]): | |
x = np.array(range(0,256,16)).astype(np.float32)/127.5-1. | |
y = np.array(range(0,256,16)).astype(np.float32)/127.5-1. | |
xx, yy = np.meshgrid(x,y) | |
grid = np.concatenate([xx[:,:,None],yy[:,:,None]], axis=2) | |
grid = torch.from_numpy(grid[None,:]).cuda() | |
grid = grid.repeat(self.opts.batch_size,1,1,1) | |
while self.global_step < self.opts.max_steps: | |
with torch.no_grad(): | |
z1 = torch.randn(self.opts.batch_size,512).to("cuda") | |
z2 = torch.randn(self.opts.batch_size,self.net.style_num, 512).to("cuda") | |
x1, w1, f1 = self.net.decoder([z1],input_is_latent=False,randomize_noise=False,return_feature_map=True,return_latents=True,truncation=truncation, truncation_latent=self.net.latent_avg[0]) | |
x1 = self.net.face_pool(x1) | |
x2, w2 = self.net.decoder([z2],input_is_latent=False,randomize_noise=False,return_latents=True, truncation_latent=self.net.latent_avg[0]) | |
x2 = self.net.face_pool(x2) | |
w_mid = w1.clone() | |
w_mid[:,target_layers] = w_mid[:,target_layers]+sigma*(w2[:,target_layers]-w_mid[:,target_layers]) | |
x_mid, _ = self.net.decoder([w_mid], input_is_latent=True, randomize_noise=False, return_latents=False) | |
x_mid = self.net.face_pool(x_mid) | |
flow, logexp = self.ex.run(x1.detach(),x_mid.detach()) | |
flow_feature = torch.cat([flow/self.sigma_f, logexp/self.sigma_e], dim=1) | |
f1 = F.interpolate(f1, (flow_feature.shape[2:])) | |
f1 = F.grid_sample(f1, grid, mode='nearest', align_corners=True) | |
flow_feature = F.grid_sample(flow_feature, grid, mode='nearest', align_corners=True) | |
flow_feature = flow_feature.view(flow_feature.shape[0], flow_feature.shape[1], -1).permute(0,2,1) | |
f1 = f1.view(f1.shape[0], f1.shape[1], -1).permute(0,2,1) | |
self.net.train() | |
self.optimizer.zero_grad() | |
w_hat = self.net.encoder(w1[:,target_layers].detach(), flow_feature.detach(), f1.detach()) | |
loss, loss_dict, id_logs = self.calc_loss(w_hat, w_mid[:,target_layers].detach()) | |
loss.backward() | |
self.optimizer.step() | |
w_mid[:,target_layers] = w_hat.detach() | |
x_hat, _ = self.net.decoder([w_mid], input_is_latent=True, randomize_noise=False) | |
x_hat = self.net.face_pool(x_hat) | |
if self.global_step % self.opts.image_interval == 0 or ( | |
self.global_step < 1000 and self.global_step % 100 == 0): | |
imgL_o = ((x1.detach()+1.)*127.5)[0].permute(1,2,0).cpu().numpy() | |
flow = torch.cat((flow,torch.ones_like(flow)[:,:1]), dim=1)[0].permute(1,2,0).cpu().numpy() | |
flowvis = point_vec(imgL_o, flow) | |
flowvis = torch.from_numpy(flowvis[:,:,::-1].copy()).permute(2,0,1).unsqueeze(0)/127.5-1. | |
self.parse_and_log_images(None, flowvis, x_mid, x_hat, title='trained_images') | |
print(loss_dict) | |
if self.global_step % self.opts.save_interval == 0 or self.global_step == self.opts.max_steps: | |
self.checkpoint_me(loss_dict, is_best=False) | |
if self.global_step == self.opts.max_steps: | |
print('OMG, finished training!') | |
break | |
self.global_step += 1 | |
def checkpoint_me(self, loss_dict, is_best): | |
save_name = 'best_model.pt' if is_best else 'iteration_{}.pt'.format(self.global_step) | |
save_dict = self.__get_save_dict() | |
checkpoint_path = os.path.join(self.checkpoint_dir, save_name) | |
torch.save(save_dict, checkpoint_path) | |
with open(os.path.join(self.checkpoint_dir, 'timestamp.txt'), 'a') as f: | |
if is_best: | |
f.write('**Best**: Step - {}, Loss - {:.3f} \n{}\n'.format(self.global_step, self.best_val_loss, loss_dict)) | |
else: | |
f.write('Step - {}, \n{}\n'.format(self.global_step, loss_dict)) | |
def configure_optimizers(self): | |
params = list(self.net.encoder.parameters()) | |
if self.opts.train_decoder: | |
params += list(self.net.decoder.parameters()) | |
if self.opts.optim_name == 'adam': | |
optimizer = torch.optim.Adam(params, lr=self.opts.learning_rate) | |
else: | |
optimizer = Ranger(params, lr=self.opts.learning_rate) | |
return optimizer | |
def calc_loss(self, latent, w, y_hat=None, y=None): | |
loss_dict = {} | |
loss = 0.0 | |
id_logs = None | |
if self.opts.l2_lambda > 0 and (y_hat is not None) and (y is not None): | |
loss_l2 = F.mse_loss(y_hat, y) | |
loss_dict['loss_l2'] = float(loss_l2) | |
loss += loss_l2 * self.opts.l2_lambda | |
if self.opts.lpips_lambda > 0 and (y_hat is not None) and (y is not None): | |
loss_lpips = self.lpips_loss(y_hat, y) | |
loss_dict['loss_lpips'] = float(loss_lpips) | |
loss += loss_lpips * self.opts.lpips_lambda | |
if self.opts.l2latent_lambda > 0: | |
loss_l2 = F.mse_loss(latent, w) | |
loss_dict['loss_l2latent'] = float(loss_l2) | |
loss += loss_l2 * self.opts.l2latent_lambda | |
loss_dict['loss'] = float(loss) | |
return loss, loss_dict, id_logs | |
def parse_and_log_images(self, id_logs, x, y, y_hat, title, subscript=None, display_count=1): | |
im_data = [] | |
for i in range(display_count): | |
cur_im_data = { | |
'input_face': common.tensor2im(x[i]), | |
'target_face': common.tensor2im(y[i]), | |
'output_face': common.tensor2im(y_hat[i]), | |
} | |
if id_logs is not None: | |
for key in id_logs[i]: | |
cur_im_data[key] = id_logs[i][key] | |
im_data.append(cur_im_data) | |
self.log_images(title, im_data=im_data, subscript=subscript) | |
def log_images(self, name, im_data, subscript=None, log_latest=False): | |
fig = common.vis_faces(im_data) | |
step = self.global_step | |
if log_latest: | |
step = 0 | |
if subscript: | |
path = os.path.join(self.logger.log_dir, name, '{}_{:04d}.jpg'.format(subscript, step)) | |
else: | |
path = os.path.join(self.logger.log_dir, name, '{:04d}.jpg'.format(step)) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
fig.savefig(path) | |
plt.close(fig) | |
def __get_save_dict(self): | |
save_dict = { | |
'state_dict': self.net.state_dict(), | |
'opts': vars(self.opts) | |
} | |
save_dict['latent_avg'] = self.net.latent_avg | |
return save_dict |