Spaces:
Running
on
A100
Running
on
A100
sdxl loras
Browse files
frontend/src/lib/components/Selectlist.svelte
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
</script>
|
10 |
|
11 |
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
12 |
-
<label for="model-list" class="font-medium">{params?.title} </label>
|
13 |
{#if params?.values}
|
14 |
<select
|
15 |
bind:value
|
|
|
9 |
</script>
|
10 |
|
11 |
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
12 |
+
<label for="model-list" class="text-sm font-medium">{params?.title} </label>
|
13 |
{#if params?.values}
|
14 |
<select
|
15 |
bind:value
|
frontend/src/lib/components/TextArea.svelte
CHANGED
@@ -8,11 +8,16 @@
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
-
<div class="
|
12 |
-
<
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
</div>
|
|
|
8 |
});
|
9 |
</script>
|
10 |
|
11 |
+
<div class="px-1 py-1">
|
12 |
+
<label class="text-sm font-medium" for={params?.title}>
|
13 |
+
{params?.title}
|
14 |
+
</label>
|
15 |
+
<div class="text-normal flex items-center rounded-md border border-gray-700">
|
16 |
+
<textarea
|
17 |
+
class="mx-1 w-full px-3 py-2 font-light outline-none dark:text-black"
|
18 |
+
title={params?.title}
|
19 |
+
placeholder="Add your prompt here..."
|
20 |
+
bind:value
|
21 |
+
></textarea>
|
22 |
+
</div>
|
23 |
</div>
|
frontend/src/routes/+page.svelte
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
let pipelineInfo: PipelineInfo;
|
17 |
let isImageMode: boolean = false;
|
18 |
let maxQueueSize: number = 0;
|
19 |
-
|
20 |
onMount(() => {
|
21 |
getSettings();
|
22 |
});
|
@@ -28,6 +28,16 @@
|
|
28 |
isImageMode = pipelineInfo.input_mode.default === PipelineMode.IMAGE;
|
29 |
maxQueueSize = settings.max_queue_size;
|
30 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
|
33 |
function getSreamdata() {
|
@@ -59,14 +69,14 @@
|
|
59 |
}
|
60 |
</script>
|
61 |
|
62 |
-
<div class="fixed right-2 top-2 max-w-xs rounded-lg p-4 text-
|
63 |
<main class="container mx-auto flex max-w-4xl flex-col gap-3 px-4 py-4">
|
64 |
-
<article class="
|
65 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
66 |
{#if pipelineInfo?.title?.default}
|
67 |
<h3 class="text-xl font-bold">{pipelineInfo?.title?.default}</h3>
|
68 |
{/if}
|
69 |
-
<p class="
|
70 |
This demo showcases
|
71 |
<a
|
72 |
href="https://huggingface.co/blog/lcm_lora"
|
@@ -80,10 +90,17 @@
|
|
80 |
class="text-blue-500 underline hover:no-underline">Diffusers</a
|
81 |
> with a MJPEG stream server.
|
82 |
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
{#if maxQueueSize > 0}
|
84 |
<p class="text-sm">
|
85 |
-
There are <span id="queue_size" class="font-bold">
|
86 |
-
affecting real-time performance. Maximum queue size is {maxQueueSize}.
|
87 |
<a
|
88 |
href="https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model?duplicate=true"
|
89 |
target="_blank"
|
@@ -93,16 +110,6 @@
|
|
93 |
{/if}
|
94 |
</article>
|
95 |
{#if pipelineParams}
|
96 |
-
<header>
|
97 |
-
<h2 class="font-medium">Prompt</h2>
|
98 |
-
<p class="text-sm text-gray-500">
|
99 |
-
Change the prompt to generate different images, accepts <a
|
100 |
-
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
|
101 |
-
target="_blank"
|
102 |
-
class="text-blue-500 underline hover:no-underline">Compel</a
|
103 |
-
> syntax.
|
104 |
-
</p>
|
105 |
-
</header>
|
106 |
<PipelineOptions {pipelineParams}></PipelineOptions>
|
107 |
<div class="flex gap-3">
|
108 |
<Button on:click={toggleLcmLive} {disabled}>
|
|
|
16 |
let pipelineInfo: PipelineInfo;
|
17 |
let isImageMode: boolean = false;
|
18 |
let maxQueueSize: number = 0;
|
19 |
+
let currentQueueSize: number = 0;
|
20 |
onMount(() => {
|
21 |
getSettings();
|
22 |
});
|
|
|
28 |
isImageMode = pipelineInfo.input_mode.default === PipelineMode.IMAGE;
|
29 |
maxQueueSize = settings.max_queue_size;
|
30 |
pipelineParams = pipelineParams.filter((e) => e?.disabled !== true);
|
31 |
+
if (maxQueueSize > 0) {
|
32 |
+
getQueueSize();
|
33 |
+
setInterval(() => {
|
34 |
+
getQueueSize();
|
35 |
+
}, 2000);
|
36 |
+
}
|
37 |
+
}
|
38 |
+
async function getQueueSize() {
|
39 |
+
const data = await fetch(`${PUBLIC_BASE_URL}/queue_size`).then((r) => r.json());
|
40 |
+
currentQueueSize = data.queue_size;
|
41 |
}
|
42 |
|
43 |
function getSreamdata() {
|
|
|
69 |
}
|
70 |
</script>
|
71 |
|
72 |
+
<div class="fixed right-2 top-2 max-w-xs rounded-lg p-4 text-sm font-bold" id="error" />
|
73 |
<main class="container mx-auto flex max-w-4xl flex-col gap-3 px-4 py-4">
|
74 |
+
<article class="text-center">
|
75 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
76 |
{#if pipelineInfo?.title?.default}
|
77 |
<h3 class="text-xl font-bold">{pipelineInfo?.title?.default}</h3>
|
78 |
{/if}
|
79 |
+
<p class="text-sm">
|
80 |
This demo showcases
|
81 |
<a
|
82 |
href="https://huggingface.co/blog/lcm_lora"
|
|
|
90 |
class="text-blue-500 underline hover:no-underline">Diffusers</a
|
91 |
> with a MJPEG stream server.
|
92 |
</p>
|
93 |
+
<p class="text-sm text-gray-500">
|
94 |
+
Change the prompt to generate different images, accepts <a
|
95 |
+
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
|
96 |
+
target="_blank"
|
97 |
+
class="text-blue-500 underline hover:no-underline">Compel</a
|
98 |
+
> syntax.
|
99 |
+
</p>
|
100 |
{#if maxQueueSize > 0}
|
101 |
<p class="text-sm">
|
102 |
+
There are <span id="queue_size" class="font-bold">{currentQueueSize}</span>
|
103 |
+
user(s) sharing the same GPU, affecting real-time performance. Maximum queue size is {maxQueueSize}.
|
104 |
<a
|
105 |
href="https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model?duplicate=true"
|
106 |
target="_blank"
|
|
|
110 |
{/if}
|
111 |
</article>
|
112 |
{#if pipelineParams}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
<PipelineOptions {pipelineParams}></PipelineOptions>
|
114 |
<div class="flex gap-3">
|
115 |
<Button on:click={toggleLcmLive} {disabled}>
|
pipelines/controlnetLoraSDXL.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import (
|
2 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
3 |
+
ControlNetModel,
|
4 |
+
LCMScheduler,
|
5 |
+
AutoencoderKL,
|
6 |
+
)
|
7 |
+
from compel import Compel, ReturnedEmbeddingsType
|
8 |
+
import torch
|
9 |
+
from pipelines.utils.canny_gpu import SobelOperator
|
10 |
+
|
11 |
+
try:
|
12 |
+
import intel_extension_for_pytorch as ipex # type: ignore
|
13 |
+
except:
|
14 |
+
pass
|
15 |
+
|
16 |
+
import psutil
|
17 |
+
from config import Args
|
18 |
+
from pydantic import BaseModel, Field
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
22 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
23 |
+
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
24 |
+
|
25 |
+
# # base model with activation token, it will prepend the prompt with the activation token
|
26 |
+
base_models = {
|
27 |
+
"plasmo/woolitize": "woolitize",
|
28 |
+
"nitrosocke/Ghibli-Diffusion": "ghibli style",
|
29 |
+
"nitrosocke/mo-di-diffusion": "modern disney style",
|
30 |
+
}
|
31 |
+
# lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
32 |
+
|
33 |
+
|
34 |
+
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
35 |
+
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
36 |
+
|
37 |
+
|
38 |
+
class Pipeline:
|
39 |
+
class Info(BaseModel):
|
40 |
+
name: str = "controlnet+loras+sdxl"
|
41 |
+
title: str = "SDXL + LCM + LoRA + Controlnet "
|
42 |
+
description: str = "Generates an image from a text prompt"
|
43 |
+
input_mode: str = "image"
|
44 |
+
|
45 |
+
class InputParams(BaseModel):
|
46 |
+
prompt: str = Field(
|
47 |
+
default_prompt,
|
48 |
+
title="Prompt",
|
49 |
+
field="textarea",
|
50 |
+
id="prompt",
|
51 |
+
)
|
52 |
+
model_id: str = Field(
|
53 |
+
"plasmo/woolitize",
|
54 |
+
title="Base Model",
|
55 |
+
values=list(base_models.keys()),
|
56 |
+
field="select",
|
57 |
+
id="model_id",
|
58 |
+
)
|
59 |
+
negative_prompt: str = Field(
|
60 |
+
default_negative_prompt,
|
61 |
+
title="Negative Prompt",
|
62 |
+
field="textarea",
|
63 |
+
id="negative_prompt",
|
64 |
+
hide=True,
|
65 |
+
)
|
66 |
+
seed: int = Field(
|
67 |
+
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
68 |
+
)
|
69 |
+
steps: int = Field(
|
70 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
71 |
+
)
|
72 |
+
width: int = Field(
|
73 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
74 |
+
)
|
75 |
+
height: int = Field(
|
76 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
77 |
+
)
|
78 |
+
guidance_scale: float = Field(
|
79 |
+
1.0,
|
80 |
+
min=0,
|
81 |
+
max=20,
|
82 |
+
step=0.001,
|
83 |
+
title="Guidance Scale",
|
84 |
+
field="range",
|
85 |
+
hide=True,
|
86 |
+
id="guidance_scale",
|
87 |
+
)
|
88 |
+
strength: float = Field(
|
89 |
+
0.5,
|
90 |
+
min=0.25,
|
91 |
+
max=1.0,
|
92 |
+
step=0.001,
|
93 |
+
title="Strength",
|
94 |
+
field="range",
|
95 |
+
hide=True,
|
96 |
+
id="strength",
|
97 |
+
)
|
98 |
+
controlnet_scale: float = Field(
|
99 |
+
0.5,
|
100 |
+
min=0,
|
101 |
+
max=1.0,
|
102 |
+
step=0.001,
|
103 |
+
title="Controlnet Scale",
|
104 |
+
field="range",
|
105 |
+
hide=True,
|
106 |
+
id="controlnet_scale",
|
107 |
+
)
|
108 |
+
controlnet_start: float = Field(
|
109 |
+
0.0,
|
110 |
+
min=0,
|
111 |
+
max=1.0,
|
112 |
+
step=0.001,
|
113 |
+
title="Controlnet Start",
|
114 |
+
field="range",
|
115 |
+
hide=True,
|
116 |
+
id="controlnet_start",
|
117 |
+
)
|
118 |
+
controlnet_end: float = Field(
|
119 |
+
1.0,
|
120 |
+
min=0,
|
121 |
+
max=1.0,
|
122 |
+
step=0.001,
|
123 |
+
title="Controlnet End",
|
124 |
+
field="range",
|
125 |
+
hide=True,
|
126 |
+
id="controlnet_end",
|
127 |
+
)
|
128 |
+
canny_low_threshold: float = Field(
|
129 |
+
0.31,
|
130 |
+
min=0,
|
131 |
+
max=1.0,
|
132 |
+
step=0.001,
|
133 |
+
title="Canny Low Threshold",
|
134 |
+
field="range",
|
135 |
+
hide=True,
|
136 |
+
id="canny_low_threshold",
|
137 |
+
)
|
138 |
+
canny_high_threshold: float = Field(
|
139 |
+
0.125,
|
140 |
+
min=0,
|
141 |
+
max=1.0,
|
142 |
+
step=0.001,
|
143 |
+
title="Canny High Threshold",
|
144 |
+
field="range",
|
145 |
+
hide=True,
|
146 |
+
id="canny_high_threshold",
|
147 |
+
)
|
148 |
+
debug_canny: bool = Field(
|
149 |
+
False,
|
150 |
+
title="Debug Canny",
|
151 |
+
field="checkbox",
|
152 |
+
hide=True,
|
153 |
+
id="debug_canny",
|
154 |
+
)
|
155 |
+
|
156 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
157 |
+
controlnet_canny = ControlNetModel.from_pretrained(
|
158 |
+
controlnet_model, torch_dtype=torch_dtype
|
159 |
+
).to(device)
|
160 |
+
vae = AutoencoderKL.from_pretrained(
|
161 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype
|
162 |
+
)
|
163 |
+
if args.safety_checker:
|
164 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
165 |
+
model_id,
|
166 |
+
controlnet=controlnet_canny,
|
167 |
+
vae=vae,
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
171 |
+
model_id,
|
172 |
+
safety_checker=None,
|
173 |
+
controlnet=controlnet_canny,
|
174 |
+
vae=vae,
|
175 |
+
)
|
176 |
+
self.canny_torch = SobelOperator(device=device)
|
177 |
+
# Load LCM LoRA
|
178 |
+
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
179 |
+
self.pipe.load_lora_weights(
|
180 |
+
"CiroN2022/toy-face",
|
181 |
+
weight_name="toy_face_sdxl.safetensors",
|
182 |
+
adapter_name="toy",
|
183 |
+
)
|
184 |
+
self.pipe.set_adapters(["lcm", "toy"], adapter_weights=[1.0, 0.8])
|
185 |
+
|
186 |
+
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
187 |
+
self.pipe.set_progress_bar_config(disable=True)
|
188 |
+
self.pipe.to(device=device, dtype=torch_dtype).to(device)
|
189 |
+
|
190 |
+
if psutil.virtual_memory().total < 64 * 1024**3:
|
191 |
+
self.pipe.enable_attention_slicing()
|
192 |
+
|
193 |
+
self.pipe.compel_proc = Compel(
|
194 |
+
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2],
|
195 |
+
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
|
196 |
+
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
197 |
+
requires_pooled=[False, True],
|
198 |
+
)
|
199 |
+
|
200 |
+
if args.torch_compile:
|
201 |
+
self.pipe.unet = torch.compile(
|
202 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
203 |
+
)
|
204 |
+
self.pipe.vae = torch.compile(
|
205 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
206 |
+
)
|
207 |
+
self.pipe(
|
208 |
+
prompt="warmup",
|
209 |
+
image=[Image.new("RGB", (768, 768))],
|
210 |
+
control_image=[Image.new("RGB", (768, 768))],
|
211 |
+
)
|
212 |
+
|
213 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
214 |
+
generator = torch.manual_seed(params.seed)
|
215 |
+
print(f"Using model: {params.model_id}")
|
216 |
+
# pipe = self.pipes[params.model_id]
|
217 |
+
|
218 |
+
# activation_token = base_models[params.model_id]
|
219 |
+
# prompt = f"{activation_token} {params.prompt}"
|
220 |
+
prompt_embeds, pooled_prompt_embeds = self.pipe.compel_proc(
|
221 |
+
[params.prompt, params.negative_prompt]
|
222 |
+
)
|
223 |
+
control_image = self.canny_torch(
|
224 |
+
params.image, params.canny_low_threshold, params.canny_high_threshold
|
225 |
+
)
|
226 |
+
|
227 |
+
results = self.pipe(
|
228 |
+
image=params.image,
|
229 |
+
control_image=control_image,
|
230 |
+
prompt_embeds=prompt_embeds[0:1],
|
231 |
+
pooled_prompt_embeds=pooled_prompt_embeds[0:1],
|
232 |
+
negative_prompt_embeds=prompt_embeds[1:2],
|
233 |
+
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2],
|
234 |
+
generator=generator,
|
235 |
+
strength=params.strength,
|
236 |
+
num_inference_steps=params.steps,
|
237 |
+
guidance_scale=params.guidance_scale,
|
238 |
+
width=params.width,
|
239 |
+
height=params.height,
|
240 |
+
output_type="pil",
|
241 |
+
controlnet_conditioning_scale=params.controlnet_scale,
|
242 |
+
control_guidance_start=params.controlnet_start,
|
243 |
+
control_guidance_end=params.controlnet_end,
|
244 |
+
)
|
245 |
+
|
246 |
+
nsfw_content_detected = (
|
247 |
+
results.nsfw_content_detected[0]
|
248 |
+
if "nsfw_content_detected" in results
|
249 |
+
else False
|
250 |
+
)
|
251 |
+
if nsfw_content_detected:
|
252 |
+
return None
|
253 |
+
result_image = results.images[0]
|
254 |
+
if params.debug_canny:
|
255 |
+
# paste control_image on top of result_image
|
256 |
+
w0, h0 = (200, 200)
|
257 |
+
control_image = control_image.resize((w0, h0))
|
258 |
+
w1, h1 = result_image.size
|
259 |
+
result_image.paste(control_image, (w1 - w0, h1 - h0))
|
260 |
+
|
261 |
+
return result_image
|
pipelines/{txt2imglora.py → txt2imgLoRA.py}
RENAMED
File without changes
|