Spaces:
Sleeping
Sleeping
[IPEX] Support xpu for Intel Arc GPU
Browse filesArc A770 16G can render at ~3fps (fp16).
- app-img2img.py +7 -2
- app-txt2img.py +7 -2
app-img2img.py
CHANGED
@@ -12,6 +12,10 @@ from fastapi.staticfiles import StaticFiles
|
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
|
|
|
|
|
|
|
|
15 |
from PIL import Image
|
16 |
import numpy as np
|
17 |
import gradio as gr
|
@@ -31,7 +35,8 @@ USE_TINY_AUTOENCODER=True
|
|
31 |
|
32 |
# check if MPS is available OSX only M1/M2/M3 chips
|
33 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
34 |
-
|
|
|
35 |
torch_device = device
|
36 |
|
37 |
# change to torch.float16 to save GPU memory
|
@@ -72,7 +77,7 @@ pipe.unet.to(memory_format=torch.channels_last)
|
|
72 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
73 |
pipe.enable_attention_slicing()
|
74 |
|
75 |
-
if not mps_available:
|
76 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
77 |
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
78 |
|
|
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
15 |
+
try:
|
16 |
+
import intel_extension_for_pytorch as ipex
|
17 |
+
except:
|
18 |
+
pass
|
19 |
from PIL import Image
|
20 |
import numpy as np
|
21 |
import gradio as gr
|
|
|
35 |
|
36 |
# check if MPS is available OSX only M1/M2/M3 chips
|
37 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
38 |
+
xpu_available = hasattr(torch, 'xpu') and torch.xpu.is_available()
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu")
|
40 |
torch_device = device
|
41 |
|
42 |
# change to torch.float16 to save GPU memory
|
|
|
77 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
78 |
pipe.enable_attention_slicing()
|
79 |
|
80 |
+
if not mps_available and not xpu_available:
|
81 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
82 |
pipe(prompt="warmup", image=[Image.new("RGB", (512, 512))])
|
83 |
|
app-txt2img.py
CHANGED
@@ -12,6 +12,10 @@ from fastapi.staticfiles import StaticFiles
|
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
|
|
|
|
|
|
|
|
15 |
from PIL import Image
|
16 |
import numpy as np
|
17 |
import gradio as gr
|
@@ -32,7 +36,8 @@ USE_TINY_AUTOENCODER=True
|
|
32 |
|
33 |
# check if MPS is available OSX only M1/M2/M3 chips
|
34 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
35 |
-
|
|
|
36 |
torch_device = device
|
37 |
# change to torch.float16 to save GPU memory
|
38 |
torch_dtype = torch.float32
|
@@ -72,7 +77,7 @@ pipe.unet.to(memory_format=torch.channels_last)
|
|
72 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
73 |
pipe.enable_attention_slicing()
|
74 |
|
75 |
-
if not mps_available:
|
76 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
77 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
78 |
|
|
|
12 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
13 |
from compel import Compel
|
14 |
import torch
|
15 |
+
try:
|
16 |
+
import intel_extension_for_pytorch as ipex
|
17 |
+
except:
|
18 |
+
pass
|
19 |
from PIL import Image
|
20 |
import numpy as np
|
21 |
import gradio as gr
|
|
|
36 |
|
37 |
# check if MPS is available OSX only M1/M2/M3 chips
|
38 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
39 |
+
xpu_available = hasattr(torch, 'xpu') and torch.xpu.is_available()
|
40 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu")
|
41 |
torch_device = device
|
42 |
# change to torch.float16 to save GPU memory
|
43 |
torch_dtype = torch.float32
|
|
|
77 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
78 |
pipe.enable_attention_slicing()
|
79 |
|
80 |
+
if not mps_available and not xpu_available:
|
81 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
82 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
83 |
|