Spaces:
Running
on
A100
Running
on
A100
from diffusers import DiffusionPipeline, AutoencoderTiny | |
from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet | |
from compel import Compel | |
import torch | |
try: | |
import intel_extension_for_pytorch as ipex # type: ignore | |
except: | |
pass | |
import psutil | |
from config import Args | |
from pydantic import BaseModel | |
from PIL import Image | |
from typing import Callable | |
base_model = "SimianLuo/LCM_Dreamshaper_v7" | |
WIDTH = 512 | |
HEIGHT = 512 | |
class Pipeline: | |
class InputParams(BaseModel): | |
seed: int = 2159232 | |
prompt: str | |
guidance_scale: float = 8.0 | |
strength: float = 0.5 | |
steps: int = 4 | |
lcm_steps: int = 50 | |
width: int = WIDTH | |
height: int = HEIGHT | |
def create_pipeline( | |
args: Args, device: torch.device, torch_dtype: torch.dtype | |
) -> Callable[["Pipeline.InputParams"], Image.Image]: | |
if args.safety_checker: | |
pipe = DiffusionPipeline.from_pretrained(base_model) | |
else: | |
pipe = DiffusionPipeline.from_pretrained(base_model, safety_checker=None) | |
if args.use_taesd: | |
pipe.vae = AutoencoderTiny.from_pretrained( | |
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True | |
) | |
pipe.set_progress_bar_config(disable=True) | |
pipe.to(device=device, dtype=torch_dtype) | |
pipe.unet.to(memory_format=torch.channels_last) | |
# check if computer has less than 64GB of RAM using sys or os | |
if psutil.virtual_memory().total < 64 * 1024**3: | |
pipe.enable_attention_slicing() | |
if args.torch_compile: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
compel_proc = Compel( | |
tokenizer=pipe.tokenizer, | |
text_encoder=pipe.text_encoder, | |
truncate_long_prompts=False, | |
) | |
def predict(params: "Pipeline.InputParams") -> Image.Image: | |
generator = torch.manual_seed(params.seed) | |
prompt_embeds = compel_proc(params.prompt) | |
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps. | |
results = pipe( | |
prompt_embeds=prompt_embeds, | |
generator=generator, | |
num_inference_steps=params.steps, | |
guidance_scale=params.guidance_scale, | |
width=params.width, | |
height=params.height, | |
original_inference_steps=params.lcm_steps, | |
output_type="pil", | |
) | |
nsfw_content_detected = ( | |
results.nsfw_content_detected[0] | |
if "nsfw_content_detected" in results | |
else False | |
) | |
if nsfw_content_detected: | |
return None | |
return results.images[0] | |
return predict | |