Spaces:
Runtime error
Runtime error
| import torch | |
| from optimum.quanto import freeze, qfloat8, quantize | |
| from transformers.modeling_utils import PreTrainedModel | |
| from diffusers import AutoencoderTiny | |
| from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel | |
| from diffusers.pipelines.flux.pipeline_flux_img2img import FluxImg2ImgPipeline | |
| from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
| from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL | |
| from pruna import smash, SmashConfig | |
| from pruna.telemetry import set_telemetry_metrics | |
| set_telemetry_metrics(False) # disable telemetry for current session | |
| set_telemetry_metrics(False, set_as_default=True) # disable telemetry globally | |
| try: | |
| import intel_extension_for_pytorch as ipex # type: ignore | |
| except: | |
| pass | |
| import psutil | |
| from config import Args | |
| from pydantic import BaseModel, Field | |
| from PIL import Image | |
| from pathlib import Path | |
| from util import ParamsModel | |
| import math | |
| import gc | |
| # model_path = "black-forest-labs/FLUX.1-dev" | |
| model_path = "black-forest-labs/FLUX.1-schnell" | |
| base_model_path = "black-forest-labs/FLUX.1-schnell" | |
| taesd_path = "madebyollin/taef1" | |
| subfolder = "transformer" | |
| transformer_path = model_path | |
| models_path = Path("models") | |
| default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" | |
| default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" | |
| page_content = """ | |
| <h1 class="text-3xl font-bold">Real-Time FLUX</h1> | |
| """ | |
| def flush(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| class Pipeline: | |
| class Info(BaseModel): | |
| name: str = "img2img" | |
| title: str = "Image-to-Image SDXL" | |
| description: str = "Generates an image from a text prompt" | |
| input_mode: str = "image" | |
| page_content: str = page_content | |
| class InputParams(ParamsModel): | |
| prompt: str = Field( | |
| default_prompt, | |
| title="Prompt", | |
| field="textarea", | |
| id="prompt", | |
| ) | |
| seed: int = Field( | |
| 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
| ) | |
| steps: int = Field( | |
| 1, min=1, max=15, title="Steps", field="range", hide=True, id="steps" | |
| ) | |
| width: int = Field( | |
| 1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
| ) | |
| height: int = Field( | |
| 1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
| ) | |
| strength: float = Field( | |
| 0.5, | |
| min=0.25, | |
| max=1.0, | |
| step=0.001, | |
| title="Strength", | |
| field="range", | |
| hide=True, | |
| id="strength", | |
| ) | |
| guidance: float = Field( | |
| 3.5, | |
| min=0, | |
| max=20, | |
| step=0.001, | |
| title="Guidance", | |
| hide=True, | |
| field="range", | |
| id="guidance", | |
| ) | |
| def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
| # ckpt_path = ( | |
| # "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" | |
| # ) | |
| print("Loading model") | |
| model_id = "black-forest-labs/FLUX.1-schnell" | |
| model_revision = "refs/pr/1" | |
| text_model_id = "openai/clip-vit-large-patch14" | |
| model_data_type = torch.bfloat16 | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| text_model_id, torch_dtype=model_data_type | |
| ) | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| text_model_id, torch_dtype=model_data_type | |
| ) | |
| # 2 | |
| tokenizer_2 = T5TokenizerFast.from_pretrained( | |
| model_id, | |
| subfolder="tokenizer_2", | |
| torch_dtype=model_data_type, | |
| revision=model_revision, | |
| ) | |
| text_encoder_2 = T5EncoderModel.from_pretrained( | |
| model_id, | |
| subfolder="text_encoder_2", | |
| torch_dtype=model_data_type, | |
| revision=model_revision, | |
| ) | |
| # Transformers | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
| model_id, subfolder="scheduler", revision=model_revision | |
| ) | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| model_id, | |
| subfolder="transformer", | |
| torch_dtype=model_data_type, | |
| revision=model_revision, | |
| ) | |
| # VAE | |
| # vae = AutoencoderKL.from_pretrained( | |
| # model_id, | |
| # subfolder="vae", | |
| # torch_dtype=model_data_type, | |
| # revision=model_revision, | |
| # ) | |
| vae = AutoencoderTiny.from_pretrained( | |
| "madebyollin/taef1", torch_dtype=torch.bfloat16 | |
| ) | |
| # Initialize the SmashConfig | |
| smash_config = SmashConfig() | |
| smash_config["quantizer"] = "quanto" | |
| smash_config["quanto_calibrate"] = False | |
| smash_config["quanto_weight_bits"] = "qint4" | |
| # ( | |
| # "qint4" # "qfloat8" # or "qint2", "qint4", "qint8" | |
| # ) | |
| transformer = smash( | |
| model=transformer, | |
| smash_config=smash_config, | |
| ) | |
| text_encoder_2 = smash( | |
| model=text_encoder_2, | |
| smash_config=smash_config, | |
| ) | |
| pipe = FluxImg2ImgPipeline( | |
| scheduler=scheduler, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer_2=tokenizer_2, | |
| vae=vae, | |
| transformer=transformer, | |
| ) | |
| # if args.taesd: | |
| # pipe.vae = AutoencoderTiny.from_pretrained( | |
| # taesd_path, torch_dtype=torch.bfloat16, use_safetensors=True | |
| # ) | |
| # pipe.enable_model_cpu_offload() | |
| pipe.text_encoder.to(device) | |
| pipe.vae.to(device) | |
| pipe.transformer.to(device) | |
| pipe.text_encoder_2.to(device) | |
| # pipe.enable_model_cpu_offload() | |
| # For added memory savings run this block, there is however a trade-off with speed. | |
| # vae.enable_tiling() | |
| # vae.enable_slicing() | |
| # pipe.enable_sequential_cpu_offload() | |
| self.pipe = pipe | |
| self.pipe.set_progress_bar_config(disable=True) | |
| # vae = AutoencoderKL.from_pretrained( | |
| # base_model_path, subfolder="vae", torch_dtype=torch_dtype | |
| # ) | |
| def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
| generator = torch.manual_seed(params.seed) | |
| steps = params.steps | |
| strength = params.strength | |
| prompt = params.prompt | |
| guidance = params.guidance | |
| results = self.pipe( | |
| image=params.image, | |
| prompt=prompt, | |
| generator=generator, | |
| strength=strength, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance, | |
| width=params.width, | |
| height=params.height, | |
| ) | |
| return results.images[0] | |