Spaces:
Runtime error
Runtime error
| from diffusers import ( | |
| StableDiffusionControlNetImg2ImgPipeline, | |
| ControlNetModel, | |
| LCMScheduler, | |
| AutoencoderTiny, | |
| ) | |
| from compel import Compel | |
| import torch | |
| try: | |
| import intel_extension_for_pytorch as ipex # type: ignore | |
| except: | |
| pass | |
| import psutil | |
| from config import Args | |
| from pydantic import BaseModel, Field | |
| from util import ParamsModel | |
| from PIL import Image | |
| import math | |
| taesd_model = "madebyollin/taesd" | |
| controlnet_model = "monster-labs/control_v1p_sd15_qrcode_monster" | |
| base_model = "nitrosocke/mo-di-diffusion" | |
| lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" | |
| default_prompt = "abstract art of a men with curly hair by Pablo Picasso" | |
| page_content = """ | |
| <h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDv1.5</h1> | |
| <h3 class="text-xl font-bold">LCM + LoRA + Controlnet + QRCode</h3> | |
| <p class="text-sm"> | |
| This demo showcases | |
| <a | |
| href="https://huggingface.co/blog/lcm_lora" | |
| target="_blank" | |
| class="text-blue-500 underline hover:no-underline">LCM LoRA</a> | |
| + ControlNet + Image to Imasge pipeline using | |
| <a | |
| href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm" | |
| target="_blank" | |
| class="text-blue-500 underline hover:no-underline">Diffusers</a | |
| > with a MJPEG stream server. | |
| </p> | |
| <p class="text-sm text-gray-500"> | |
| Change the prompt to generate different images, accepts <a | |
| href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" | |
| target="_blank" | |
| class="text-blue-500 underline hover:no-underline">Compel</a | |
| > syntax. | |
| </p> | |
| """ | |
| class Pipeline: | |
| class Info(BaseModel): | |
| name: str = "controlnet+loras+sd15" | |
| title: str = "LCM + LoRA + Controlnet" | |
| description: str = "Generates an image from a text prompt" | |
| input_mode: str = "image" | |
| page_content: str = page_content | |
| class InputParams(ParamsModel): | |
| prompt: str = Field( | |
| default_prompt, | |
| title="Prompt", | |
| field="textarea", | |
| id="prompt", | |
| ) | |
| seed: int = Field( | |
| 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" | |
| ) | |
| steps: int = Field( | |
| 5, min=1, max=15, title="Steps", field="range", hide=True, id="steps" | |
| ) | |
| width: int = Field( | |
| 512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
| ) | |
| height: int = Field( | |
| 512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
| ) | |
| guidance_scale: float = Field( | |
| 1.0, | |
| min=0, | |
| max=2, | |
| step=0.001, | |
| title="Guidance Scale", | |
| field="range", | |
| hide=True, | |
| id="guidance_scale", | |
| ) | |
| strength: float = Field( | |
| 0.6, | |
| min=0.25, | |
| max=1.0, | |
| step=0.001, | |
| title="Strength", | |
| field="range", | |
| hide=True, | |
| id="strength", | |
| ) | |
| controlnet_scale: float = Field( | |
| 1.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Scale", | |
| field="range", | |
| hide=True, | |
| id="controlnet_scale", | |
| ) | |
| controlnet_start: float = Field( | |
| 0.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet Start", | |
| field="range", | |
| hide=True, | |
| id="controlnet_start", | |
| ) | |
| controlnet_end: float = Field( | |
| 1.0, | |
| min=0, | |
| max=1.0, | |
| step=0.001, | |
| title="Controlnet End", | |
| field="range", | |
| hide=True, | |
| id="controlnet_end", | |
| ) | |
| blend: float = Field( | |
| 0.1, | |
| min=0.0, | |
| max=1.0, | |
| step=0.001, | |
| title="Blend", | |
| field="range", | |
| hide=True, | |
| id="blend", | |
| ) | |
| def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
| controlnet_qrcode = ControlNetModel.from_pretrained( | |
| controlnet_model, torch_dtype=torch_dtype, subfolder="v2" | |
| ).to(device) | |
| if args.safety_checker: | |
| self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
| base_model, | |
| controlnet=controlnet_qrcode, | |
| ) | |
| else: | |
| self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
| base_model, | |
| safety_checker=None, | |
| controlnet=controlnet_qrcode, | |
| ) | |
| self.control_image = Image.open("qr-code.png").convert("RGB").resize((512, 512)) | |
| self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) | |
| self.pipe.set_progress_bar_config(disable=True) | |
| if device.type != "mps": | |
| self.pipe.unet.to(memory_format=torch.channels_last) | |
| if args.taesd: | |
| self.pipe.vae = AutoencoderTiny.from_pretrained( | |
| taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
| ).to(device) | |
| # Load LCM LoRA | |
| self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") | |
| self.pipe.to(device=device, dtype=torch_dtype).to(device) | |
| if args.compel: | |
| self.compel_proc = Compel( | |
| tokenizer=self.pipe.tokenizer, | |
| text_encoder=self.pipe.text_encoder, | |
| truncate_long_prompts=False, | |
| ) | |
| if args.torch_compile: | |
| self.pipe.unet = torch.compile( | |
| self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe.vae = torch.compile( | |
| self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
| ) | |
| self.pipe( | |
| prompt="warmup", | |
| image=[Image.new("RGB", (512, 512))], | |
| control_image=[Image.new("RGB", (512, 512))], | |
| ) | |
| def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
| generator = torch.manual_seed(params.seed) | |
| prompt = f"modern disney style {params.prompt}" | |
| prompt_embeds = None | |
| prompt = params.prompt | |
| if hasattr(self, "compel_proc"): | |
| prompt_embeds = self.compel_proc(prompt) | |
| prompt = None | |
| steps = params.steps | |
| strength = params.strength | |
| if int(steps * strength) < 1: | |
| steps = math.ceil(1 / max(0.10, strength)) | |
| blend_qr_image = Image.blend( | |
| params.image, self.control_image, alpha=params.blend | |
| ) | |
| results = self.pipe( | |
| image=blend_qr_image, | |
| control_image=self.control_image, | |
| prompt=prompt, | |
| prompt_embeds=prompt_embeds, | |
| generator=generator, | |
| strength=strength, | |
| num_inference_steps=steps, | |
| guidance_scale=params.guidance_scale, | |
| width=params.width, | |
| height=params.height, | |
| output_type="pil", | |
| controlnet_conditioning_scale=params.controlnet_scale, | |
| control_guidance_start=params.controlnet_start, | |
| control_guidance_end=params.controlnet_end, | |
| ) | |
| return results.images[0] | |