use taesd for all models
Browse files- pipelines/controlnet.py +11 -6
- pipelines/controlnetLoraSD15.py +16 -6
- pipelines/controlnetLoraSDXL.py +16 -5
- pipelines/controlnetSDXLTurbo.py +10 -4
- pipelines/img2img.py +13 -6
- pipelines/img2imgSDXLTurbo.py +2 -2
- pipelines/txt2img.py +3 -3
- pipelines/txt2imgLora.py +1 -1
- pipelines/txt2imgLoraSDXL.py +7 -7
pipelines/controlnet.py
CHANGED
@@ -16,6 +16,7 @@ import psutil
|
|
16 |
from config import Args
|
17 |
from pydantic import BaseModel, Field
|
18 |
from PIL import Image
|
|
|
19 |
|
20 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
21 |
taesd_model = "madebyollin/taesd"
|
@@ -68,13 +69,13 @@ class Pipeline:
|
|
68 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
69 |
)
|
70 |
steps: int = Field(
|
71 |
-
4, min=
|
72 |
)
|
73 |
width: int = Field(
|
74 |
-
|
75 |
)
|
76 |
height: int = Field(
|
77 |
-
|
78 |
)
|
79 |
guidance_scale: float = Field(
|
80 |
0.2,
|
@@ -171,7 +172,7 @@ class Pipeline:
|
|
171 |
if args.use_taesd:
|
172 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
173 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
174 |
-
)
|
175 |
self.canny_torch = SobelOperator(device=device)
|
176 |
self.pipe.set_progress_bar_config(disable=True)
|
177 |
self.pipe.to(device=device, dtype=torch_dtype)
|
@@ -208,14 +209,18 @@ class Pipeline:
|
|
208 |
control_image = self.canny_torch(
|
209 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
210 |
)
|
|
|
|
|
|
|
|
|
211 |
|
212 |
results = self.pipe(
|
213 |
image=params.image,
|
214 |
control_image=control_image,
|
215 |
prompt_embeds=prompt_embeds,
|
216 |
generator=generator,
|
217 |
-
strength=
|
218 |
-
num_inference_steps=
|
219 |
guidance_scale=params.guidance_scale,
|
220 |
width=params.width,
|
221 |
height=params.height,
|
|
|
16 |
from config import Args
|
17 |
from pydantic import BaseModel, Field
|
18 |
from PIL import Image
|
19 |
+
import math
|
20 |
|
21 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
22 |
taesd_model = "madebyollin/taesd"
|
|
|
69 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
70 |
)
|
71 |
steps: int = Field(
|
72 |
+
4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
73 |
)
|
74 |
width: int = Field(
|
75 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
76 |
)
|
77 |
height: int = Field(
|
78 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
79 |
)
|
80 |
guidance_scale: float = Field(
|
81 |
0.2,
|
|
|
172 |
if args.use_taesd:
|
173 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
174 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
175 |
+
).to(device)
|
176 |
self.canny_torch = SobelOperator(device=device)
|
177 |
self.pipe.set_progress_bar_config(disable=True)
|
178 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
209 |
control_image = self.canny_torch(
|
210 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
211 |
)
|
212 |
+
steps = params.steps
|
213 |
+
strength = params.strength
|
214 |
+
if int(steps * strength) < 1:
|
215 |
+
steps = math.ceil(1 / max(0.10, strength))
|
216 |
|
217 |
results = self.pipe(
|
218 |
image=params.image,
|
219 |
control_image=control_image,
|
220 |
prompt_embeds=prompt_embeds,
|
221 |
generator=generator,
|
222 |
+
strength=strength,
|
223 |
+
num_inference_steps=steps,
|
224 |
guidance_scale=params.guidance_scale,
|
225 |
width=params.width,
|
226 |
height=params.height,
|
pipelines/controlnetLoraSD15.py
CHANGED
@@ -2,6 +2,7 @@ from diffusers import (
|
|
2 |
StableDiffusionControlNetImg2ImgPipeline,
|
3 |
ControlNetModel,
|
4 |
LCMScheduler,
|
|
|
5 |
)
|
6 |
from compel import Compel
|
7 |
import torch
|
@@ -16,6 +17,7 @@ import psutil
|
|
16 |
from config import Args
|
17 |
from pydantic import BaseModel, Field
|
18 |
from PIL import Image
|
|
|
19 |
|
20 |
taesd_model = "madebyollin/taesd"
|
21 |
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
|
@@ -79,13 +81,13 @@ class Pipeline:
|
|
79 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
80 |
)
|
81 |
steps: int = Field(
|
82 |
-
4, min=
|
83 |
)
|
84 |
width: int = Field(
|
85 |
-
|
86 |
)
|
87 |
height: int = Field(
|
88 |
-
|
89 |
)
|
90 |
guidance_scale: float = Field(
|
91 |
0.2,
|
@@ -200,6 +202,11 @@ class Pipeline:
|
|
200 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
201 |
pipe.enable_attention_slicing()
|
202 |
|
|
|
|
|
|
|
|
|
|
|
203 |
# Load LCM LoRA
|
204 |
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
205 |
pipe.compel_proc = Compel(
|
@@ -222,7 +229,6 @@ class Pipeline:
|
|
222 |
|
223 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
224 |
generator = torch.manual_seed(params.seed)
|
225 |
-
print(f"Using model: {params.base_model_id}")
|
226 |
pipe = self.pipes[params.base_model_id]
|
227 |
|
228 |
activation_token = base_models[params.base_model_id]
|
@@ -231,14 +237,18 @@ class Pipeline:
|
|
231 |
control_image = self.canny_torch(
|
232 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
233 |
)
|
|
|
|
|
|
|
|
|
234 |
|
235 |
results = pipe(
|
236 |
image=params.image,
|
237 |
control_image=control_image,
|
238 |
prompt_embeds=prompt_embeds,
|
239 |
generator=generator,
|
240 |
-
strength=
|
241 |
-
num_inference_steps=
|
242 |
guidance_scale=params.guidance_scale,
|
243 |
width=params.width,
|
244 |
height=params.height,
|
|
|
2 |
StableDiffusionControlNetImg2ImgPipeline,
|
3 |
ControlNetModel,
|
4 |
LCMScheduler,
|
5 |
+
AutoencoderTiny,
|
6 |
)
|
7 |
from compel import Compel
|
8 |
import torch
|
|
|
17 |
from config import Args
|
18 |
from pydantic import BaseModel, Field
|
19 |
from PIL import Image
|
20 |
+
import math
|
21 |
|
22 |
taesd_model = "madebyollin/taesd"
|
23 |
controlnet_model = "lllyasviel/control_v11p_sd15_canny"
|
|
|
81 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
82 |
)
|
83 |
steps: int = Field(
|
84 |
+
4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
85 |
)
|
86 |
width: int = Field(
|
87 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
88 |
)
|
89 |
height: int = Field(
|
90 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
91 |
)
|
92 |
guidance_scale: float = Field(
|
93 |
0.2,
|
|
|
202 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
203 |
pipe.enable_attention_slicing()
|
204 |
|
205 |
+
if args.use_taesd:
|
206 |
+
pipe.vae = AutoencoderTiny.from_pretrained(
|
207 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
208 |
+
).to(device)
|
209 |
+
|
210 |
# Load LCM LoRA
|
211 |
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
212 |
pipe.compel_proc = Compel(
|
|
|
229 |
|
230 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
231 |
generator = torch.manual_seed(params.seed)
|
|
|
232 |
pipe = self.pipes[params.base_model_id]
|
233 |
|
234 |
activation_token = base_models[params.base_model_id]
|
|
|
237 |
control_image = self.canny_torch(
|
238 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
239 |
)
|
240 |
+
steps = params.steps
|
241 |
+
strength = params.strength
|
242 |
+
if int(steps * strength) < 1:
|
243 |
+
steps = math.ceil(1 / max(0.10, strength))
|
244 |
|
245 |
results = pipe(
|
246 |
image=params.image,
|
247 |
control_image=control_image,
|
248 |
prompt_embeds=prompt_embeds,
|
249 |
generator=generator,
|
250 |
+
strength=strength,
|
251 |
+
num_inference_steps=steps,
|
252 |
guidance_scale=params.guidance_scale,
|
253 |
width=params.width,
|
254 |
height=params.height,
|
pipelines/controlnetLoraSDXL.py
CHANGED
@@ -3,6 +3,7 @@ from diffusers import (
|
|
3 |
ControlNetModel,
|
4 |
LCMScheduler,
|
5 |
AutoencoderKL,
|
|
|
6 |
)
|
7 |
from compel import Compel, ReturnedEmbeddingsType
|
8 |
import torch
|
@@ -17,10 +18,12 @@ import psutil
|
|
17 |
from config import Args
|
18 |
from pydantic import BaseModel, Field
|
19 |
from PIL import Image
|
|
|
20 |
|
21 |
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
22 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
23 |
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
|
|
24 |
|
25 |
|
26 |
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
@@ -77,7 +80,7 @@ class Pipeline:
|
|
77 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
78 |
)
|
79 |
steps: int = Field(
|
80 |
-
|
81 |
)
|
82 |
width: int = Field(
|
83 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
@@ -96,10 +99,10 @@ class Pipeline:
|
|
96 |
id="guidance_scale",
|
97 |
)
|
98 |
strength: float = Field(
|
99 |
-
|
100 |
min=0.25,
|
101 |
max=1.0,
|
102 |
-
step=0.
|
103 |
title="Strength",
|
104 |
field="range",
|
105 |
hide=True,
|
@@ -208,6 +211,10 @@ class Pipeline:
|
|
208 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
209 |
requires_pooled=[False, True],
|
210 |
)
|
|
|
|
|
|
|
|
|
211 |
|
212 |
if args.torch_compile:
|
213 |
self.pipe.unet = torch.compile(
|
@@ -231,6 +238,10 @@ class Pipeline:
|
|
231 |
control_image = self.canny_torch(
|
232 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
233 |
)
|
|
|
|
|
|
|
|
|
234 |
|
235 |
results = self.pipe(
|
236 |
image=params.image,
|
@@ -240,8 +251,8 @@ class Pipeline:
|
|
240 |
negative_prompt_embeds=prompt_embeds[1:2],
|
241 |
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2],
|
242 |
generator=generator,
|
243 |
-
strength=
|
244 |
-
num_inference_steps=
|
245 |
guidance_scale=params.guidance_scale,
|
246 |
width=params.width,
|
247 |
height=params.height,
|
|
|
3 |
ControlNetModel,
|
4 |
LCMScheduler,
|
5 |
AutoencoderKL,
|
6 |
+
AutoencoderTiny,
|
7 |
)
|
8 |
from compel import Compel, ReturnedEmbeddingsType
|
9 |
import torch
|
|
|
18 |
from config import Args
|
19 |
from pydantic import BaseModel, Field
|
20 |
from PIL import Image
|
21 |
+
import math
|
22 |
|
23 |
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
24 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
25 |
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
26 |
+
taesd_model = "madebyollin/taesdxl"
|
27 |
|
28 |
|
29 |
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
|
|
80 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
81 |
)
|
82 |
steps: int = Field(
|
83 |
+
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
84 |
)
|
85 |
width: int = Field(
|
86 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
99 |
id="guidance_scale",
|
100 |
)
|
101 |
strength: float = Field(
|
102 |
+
1,
|
103 |
min=0.25,
|
104 |
max=1.0,
|
105 |
+
step=0.0001,
|
106 |
title="Strength",
|
107 |
field="range",
|
108 |
hide=True,
|
|
|
211 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
212 |
requires_pooled=[False, True],
|
213 |
)
|
214 |
+
if args.use_taesd:
|
215 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
216 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
217 |
+
).to(device)
|
218 |
|
219 |
if args.torch_compile:
|
220 |
self.pipe.unet = torch.compile(
|
|
|
238 |
control_image = self.canny_torch(
|
239 |
params.image, params.canny_low_threshold, params.canny_high_threshold
|
240 |
)
|
241 |
+
steps = params.steps
|
242 |
+
strength = params.strength
|
243 |
+
if int(steps * strength) < 1:
|
244 |
+
steps = math.ceil(1 / max(0.10, strength))
|
245 |
|
246 |
results = self.pipe(
|
247 |
image=params.image,
|
|
|
251 |
negative_prompt_embeds=prompt_embeds[1:2],
|
252 |
negative_pooled_prompt_embeds=pooled_prompt_embeds[1:2],
|
253 |
generator=generator,
|
254 |
+
strength=strength,
|
255 |
+
num_inference_steps=steps,
|
256 |
guidance_scale=params.guidance_scale,
|
257 |
width=params.width,
|
258 |
height=params.height,
|
pipelines/controlnetSDXLTurbo.py
CHANGED
@@ -2,6 +2,7 @@ from diffusers import (
|
|
2 |
StableDiffusionXLControlNetImg2ImgPipeline,
|
3 |
ControlNetModel,
|
4 |
AutoencoderKL,
|
|
|
5 |
)
|
6 |
from compel import Compel, ReturnedEmbeddingsType
|
7 |
import torch
|
@@ -20,6 +21,7 @@ import math
|
|
20 |
|
21 |
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
22 |
model_id = "stabilityai/sdxl-turbo"
|
|
|
23 |
|
24 |
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
25 |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
@@ -75,18 +77,18 @@ class Pipeline:
|
|
75 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
76 |
)
|
77 |
steps: int = Field(
|
78 |
-
|
79 |
)
|
80 |
width: int = Field(
|
81 |
-
|
82 |
)
|
83 |
height: int = Field(
|
84 |
-
|
85 |
)
|
86 |
guidance_scale: float = Field(
|
87 |
1.0,
|
88 |
min=0,
|
89 |
-
max=
|
90 |
step=0.001,
|
91 |
title="Guidance Scale",
|
92 |
field="range",
|
@@ -197,6 +199,10 @@ class Pipeline:
|
|
197 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
198 |
requires_pooled=[False, True],
|
199 |
)
|
|
|
|
|
|
|
|
|
200 |
|
201 |
if args.torch_compile:
|
202 |
self.pipe.unet = torch.compile(
|
|
|
2 |
StableDiffusionXLControlNetImg2ImgPipeline,
|
3 |
ControlNetModel,
|
4 |
AutoencoderKL,
|
5 |
+
AutoencoderTiny,
|
6 |
)
|
7 |
from compel import Compel, ReturnedEmbeddingsType
|
8 |
import torch
|
|
|
21 |
|
22 |
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
23 |
model_id = "stabilityai/sdxl-turbo"
|
24 |
+
taesd_model = "madebyollin/taesdxl"
|
25 |
|
26 |
default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
|
27 |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
|
|
77 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
78 |
)
|
79 |
steps: int = Field(
|
80 |
+
2, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
81 |
)
|
82 |
width: int = Field(
|
83 |
+
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
84 |
)
|
85 |
height: int = Field(
|
86 |
+
1024, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
87 |
)
|
88 |
guidance_scale: float = Field(
|
89 |
1.0,
|
90 |
min=0,
|
91 |
+
max=10,
|
92 |
step=0.001,
|
93 |
title="Guidance Scale",
|
94 |
field="range",
|
|
|
199 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
200 |
requires_pooled=[False, True],
|
201 |
)
|
202 |
+
if args.use_taesd:
|
203 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
204 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
205 |
+
).to(device)
|
206 |
|
207 |
if args.torch_compile:
|
208 |
self.pipe.unet = torch.compile(
|
pipelines/img2img.py
CHANGED
@@ -14,6 +14,7 @@ import psutil
|
|
14 |
from config import Args
|
15 |
from pydantic import BaseModel, Field
|
16 |
from PIL import Image
|
|
|
17 |
|
18 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
19 |
taesd_model = "madebyollin/taesd"
|
@@ -64,13 +65,13 @@ class Pipeline:
|
|
64 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
65 |
)
|
66 |
steps: int = Field(
|
67 |
-
4, min=
|
68 |
)
|
69 |
width: int = Field(
|
70 |
-
|
71 |
)
|
72 |
height: int = Field(
|
73 |
-
|
74 |
)
|
75 |
guidance_scale: float = Field(
|
76 |
0.2,
|
@@ -104,7 +105,7 @@ class Pipeline:
|
|
104 |
if args.use_taesd:
|
105 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
106 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
107 |
-
)
|
108 |
|
109 |
self.pipe.set_progress_bar_config(disable=True)
|
110 |
self.pipe.to(device=device, dtype=torch_dtype)
|
@@ -138,12 +139,18 @@ class Pipeline:
|
|
138 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
139 |
generator = torch.manual_seed(params.seed)
|
140 |
prompt_embeds = self.compel_proc(params.prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
results = self.pipe(
|
142 |
image=params.image,
|
143 |
prompt_embeds=prompt_embeds,
|
144 |
generator=generator,
|
145 |
-
strength=
|
146 |
-
num_inference_steps=
|
147 |
guidance_scale=params.guidance_scale,
|
148 |
width=params.width,
|
149 |
height=params.height,
|
|
|
14 |
from config import Args
|
15 |
from pydantic import BaseModel, Field
|
16 |
from PIL import Image
|
17 |
+
import math
|
18 |
|
19 |
base_model = "SimianLuo/LCM_Dreamshaper_v7"
|
20 |
taesd_model = "madebyollin/taesd"
|
|
|
65 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
66 |
)
|
67 |
steps: int = Field(
|
68 |
+
4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
69 |
)
|
70 |
width: int = Field(
|
71 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
72 |
)
|
73 |
height: int = Field(
|
74 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
75 |
)
|
76 |
guidance_scale: float = Field(
|
77 |
0.2,
|
|
|
105 |
if args.use_taesd:
|
106 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
107 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
108 |
+
).to(device)
|
109 |
|
110 |
self.pipe.set_progress_bar_config(disable=True)
|
111 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
139 |
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
140 |
generator = torch.manual_seed(params.seed)
|
141 |
prompt_embeds = self.compel_proc(params.prompt)
|
142 |
+
|
143 |
+
steps = params.steps
|
144 |
+
strength = params.strength
|
145 |
+
if int(steps * strength) < 1:
|
146 |
+
steps = math.ceil(1 / max(0.10, strength))
|
147 |
+
|
148 |
results = self.pipe(
|
149 |
image=params.image,
|
150 |
prompt_embeds=prompt_embeds,
|
151 |
generator=generator,
|
152 |
+
strength=strength,
|
153 |
+
num_inference_steps=steps,
|
154 |
guidance_scale=params.guidance_scale,
|
155 |
width=params.width,
|
156 |
height=params.height,
|
pipelines/img2imgSDXLTurbo.py
CHANGED
@@ -17,7 +17,7 @@ from PIL import Image
|
|
17 |
import math
|
18 |
|
19 |
base_model = "stabilityai/sdxl-turbo"
|
20 |
-
taesd_model = "madebyollin/
|
21 |
|
22 |
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
|
23 |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
@@ -113,7 +113,7 @@ class Pipeline:
|
|
113 |
if args.use_taesd:
|
114 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
116 |
-
)
|
117 |
|
118 |
self.pipe.set_progress_bar_config(disable=True)
|
119 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
17 |
import math
|
18 |
|
19 |
base_model = "stabilityai/sdxl-turbo"
|
20 |
+
taesd_model = "madebyollin/taesdxl"
|
21 |
|
22 |
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
|
23 |
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
|
|
|
113 |
if args.use_taesd:
|
114 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
115 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
116 |
+
).to(device)
|
117 |
|
118 |
self.pipe.set_progress_bar_config(disable=True)
|
119 |
self.pipe.to(device=device, dtype=torch_dtype)
|
pipelines/txt2img.py
CHANGED
@@ -62,10 +62,10 @@ class Pipeline:
|
|
62 |
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
63 |
)
|
64 |
width: int = Field(
|
65 |
-
|
66 |
)
|
67 |
height: int = Field(
|
68 |
-
|
69 |
)
|
70 |
guidance_scale: float = Field(
|
71 |
8.0,
|
@@ -88,7 +88,7 @@ class Pipeline:
|
|
88 |
if args.use_taesd:
|
89 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
91 |
-
)
|
92 |
|
93 |
self.pipe.set_progress_bar_config(disable=True)
|
94 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
62 |
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
63 |
)
|
64 |
width: int = Field(
|
65 |
+
768, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
66 |
)
|
67 |
height: int = Field(
|
68 |
+
768, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
69 |
)
|
70 |
guidance_scale: float = Field(
|
71 |
8.0,
|
|
|
88 |
if args.use_taesd:
|
89 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
90 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
91 |
+
).to(device)
|
92 |
|
93 |
self.pipe.set_progress_bar_config(disable=True)
|
94 |
self.pipe.to(device=device, dtype=torch_dtype)
|
pipelines/txt2imgLora.py
CHANGED
@@ -95,7 +95,7 @@ class Pipeline:
|
|
95 |
if args.use_taesd:
|
96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
98 |
-
)
|
99 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
100 |
self.pipe.set_progress_bar_config(disable=True)
|
101 |
self.pipe.to(device=device, dtype=torch_dtype)
|
|
|
95 |
if args.use_taesd:
|
96 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
97 |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
98 |
+
).to(device)
|
99 |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
100 |
self.pipe.set_progress_bar_config(disable=True)
|
101 |
self.pipe.to(device=device, dtype=torch_dtype)
|
pipelines/txt2imgLoraSDXL.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
from diffusers import
|
2 |
-
DiffusionPipeline,
|
3 |
-
LCMScheduler,
|
4 |
-
AutoencoderKL,
|
5 |
-
)
|
6 |
from compel import Compel, ReturnedEmbeddingsType
|
7 |
import torch
|
8 |
|
@@ -16,9 +12,9 @@ from config import Args
|
|
16 |
from pydantic import BaseModel, Field
|
17 |
from PIL import Image
|
18 |
|
19 |
-
controlnet_model = "diffusers/controlnet-canny-sdxl-1.0"
|
20 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
21 |
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
|
|
22 |
|
23 |
|
24 |
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
|
@@ -76,7 +72,7 @@ class Pipeline:
|
|
76 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
77 |
)
|
78 |
steps: int = Field(
|
79 |
-
4, min=
|
80 |
)
|
81 |
width: int = Field(
|
82 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
@@ -127,6 +123,10 @@ class Pipeline:
|
|
127 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
128 |
requires_pooled=[False, True],
|
129 |
)
|
|
|
|
|
|
|
|
|
130 |
|
131 |
if args.torch_compile:
|
132 |
self.pipe.unet = torch.compile(
|
|
|
1 |
+
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderKL, AutoencoderTiny
|
|
|
|
|
|
|
|
|
2 |
from compel import Compel, ReturnedEmbeddingsType
|
3 |
import torch
|
4 |
|
|
|
12 |
from pydantic import BaseModel, Field
|
13 |
from PIL import Image
|
14 |
|
|
|
15 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
16 |
lcm_lora_id = "latent-consistency/lcm-lora-sdxl"
|
17 |
+
taesd_model = "madebyollin/taesdxl"
|
18 |
|
19 |
|
20 |
default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
|
|
|
72 |
2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
|
73 |
)
|
74 |
steps: int = Field(
|
75 |
+
4, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
|
76 |
)
|
77 |
width: int = Field(
|
78 |
1024, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
|
|
123 |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
|
124 |
requires_pooled=[False, True],
|
125 |
)
|
126 |
+
if args.use_taesd:
|
127 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
128 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
129 |
+
).to(device)
|
130 |
|
131 |
if args.torch_compile:
|
132 |
self.pipe.unet = torch.compile(
|