add txt2imglora pipeline
Browse files- app-txt2imglora.py +0 -254
- frontend/src/lib/components/Checkbox.svelte +4 -0
- frontend/src/lib/components/PipelineOptions.svelte +3 -3
- frontend/src/lib/components/SeedInput.svelte +6 -0
- frontend/src/lib/types.ts +3 -0
- frontend/src/routes/+page.svelte +3 -0
- pipelines/txt2img.py +1 -0
- pipelines/txt2imglora.py +84 -61
- static/txt2imglora.html +0 -279
app-txt2imglora.py
DELETED
@@ -1,254 +0,0 @@
|
|
1 |
-
import asyncio
|
2 |
-
import json
|
3 |
-
import logging
|
4 |
-
import traceback
|
5 |
-
from pydantic import BaseModel
|
6 |
-
|
7 |
-
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
|
8 |
-
from fastapi.middleware.cors import CORSMiddleware
|
9 |
-
from fastapi.responses import (
|
10 |
-
StreamingResponse,
|
11 |
-
JSONResponse,
|
12 |
-
HTMLResponse,
|
13 |
-
FileResponse,
|
14 |
-
)
|
15 |
-
|
16 |
-
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
|
17 |
-
from compel import Compel
|
18 |
-
import torch
|
19 |
-
|
20 |
-
try:
|
21 |
-
import intel_extension_for_pytorch as ipex
|
22 |
-
except:
|
23 |
-
pass
|
24 |
-
from PIL import Image
|
25 |
-
import numpy as np
|
26 |
-
import gradio as gr
|
27 |
-
import io
|
28 |
-
import uuid
|
29 |
-
import os
|
30 |
-
import time
|
31 |
-
import psutil
|
32 |
-
|
33 |
-
|
34 |
-
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
|
35 |
-
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
36 |
-
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
37 |
-
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
38 |
-
|
39 |
-
WIDTH = 512
|
40 |
-
HEIGHT = 512
|
41 |
-
|
42 |
-
# check if MPS is available OSX only M1/M2/M3 chips
|
43 |
-
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
44 |
-
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
45 |
-
device = torch.device(
|
46 |
-
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
|
47 |
-
)
|
48 |
-
torch_device = device
|
49 |
-
# change to torch.float16 to save GPU memory
|
50 |
-
torch_dtype = torch.float
|
51 |
-
|
52 |
-
print(f"TIMEOUT: {TIMEOUT}")
|
53 |
-
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
54 |
-
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
|
55 |
-
print(f"device: {device}")
|
56 |
-
|
57 |
-
if mps_available:
|
58 |
-
device = torch.device("mps")
|
59 |
-
torch_device = "cpu"
|
60 |
-
torch_dtype = torch.float32
|
61 |
-
|
62 |
-
model_id = "wavymulder/Analog-Diffusion"
|
63 |
-
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
64 |
-
|
65 |
-
if SAFETY_CHECKER == "True":
|
66 |
-
pipe = DiffusionPipeline.from_pretrained(model_id)
|
67 |
-
else:
|
68 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)
|
69 |
-
|
70 |
-
|
71 |
-
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
72 |
-
pipe.set_progress_bar_config(disable=True)
|
73 |
-
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
74 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
75 |
-
|
76 |
-
# check if computer has less than 64GB of RAM using sys or os
|
77 |
-
if psutil.virtual_memory().total < 64 * 1024**3:
|
78 |
-
pipe.enable_attention_slicing()
|
79 |
-
|
80 |
-
if TORCH_COMPILE:
|
81 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
82 |
-
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
83 |
-
|
84 |
-
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
85 |
-
|
86 |
-
# Load LCM LoRA
|
87 |
-
pipe.load_lora_weights(
|
88 |
-
lcm_lora_id,
|
89 |
-
adapter_name="lcm"
|
90 |
-
)
|
91 |
-
|
92 |
-
compel_proc = Compel(
|
93 |
-
tokenizer=pipe.tokenizer,
|
94 |
-
text_encoder=pipe.text_encoder,
|
95 |
-
truncate_long_prompts=False,
|
96 |
-
)
|
97 |
-
user_queue_map = {}
|
98 |
-
|
99 |
-
|
100 |
-
class InputParams(BaseModel):
|
101 |
-
seed: int = 2159232
|
102 |
-
prompt: str
|
103 |
-
guidance_scale: float = 0.5
|
104 |
-
strength: float = 0.5
|
105 |
-
steps: int = 4
|
106 |
-
lcm_steps: int = 50
|
107 |
-
width: int = WIDTH
|
108 |
-
height: int = HEIGHT
|
109 |
-
|
110 |
-
|
111 |
-
def predict(params: InputParams):
|
112 |
-
generator = torch.manual_seed(params.seed)
|
113 |
-
prompt_embeds = compel_proc(params.prompt)
|
114 |
-
results = pipe(
|
115 |
-
prompt_embeds=prompt_embeds,
|
116 |
-
generator=generator,
|
117 |
-
num_inference_steps=params.steps,
|
118 |
-
guidance_scale=params.guidance_scale,
|
119 |
-
width=params.width,
|
120 |
-
height=params.height,
|
121 |
-
output_type="pil",
|
122 |
-
)
|
123 |
-
nsfw_content_detected = (
|
124 |
-
results.nsfw_content_detected[0]
|
125 |
-
if "nsfw_content_detected" in results
|
126 |
-
else False
|
127 |
-
)
|
128 |
-
if nsfw_content_detected:
|
129 |
-
return None
|
130 |
-
return results.images[0]
|
131 |
-
|
132 |
-
|
133 |
-
app = FastAPI()
|
134 |
-
app.add_middleware(
|
135 |
-
CORSMiddleware,
|
136 |
-
allow_origins=["*"],
|
137 |
-
allow_credentials=True,
|
138 |
-
allow_methods=["*"],
|
139 |
-
allow_headers=["*"],
|
140 |
-
)
|
141 |
-
|
142 |
-
|
143 |
-
@app.websocket("/ws")
|
144 |
-
async def websocket_endpoint(websocket: WebSocket):
|
145 |
-
await websocket.accept()
|
146 |
-
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
|
147 |
-
print("Server is full")
|
148 |
-
await websocket.send_json({"status": "error", "message": "Server is full"})
|
149 |
-
await websocket.close()
|
150 |
-
return
|
151 |
-
|
152 |
-
try:
|
153 |
-
uid = str(uuid.uuid4())
|
154 |
-
print(f"New user connected: {uid}")
|
155 |
-
await websocket.send_json(
|
156 |
-
{"status": "success", "message": "Connected", "userId": uid}
|
157 |
-
)
|
158 |
-
user_queue_map[uid] = {
|
159 |
-
"queue": asyncio.Queue(),
|
160 |
-
}
|
161 |
-
await websocket.send_json(
|
162 |
-
{"status": "start", "message": "Start Streaming", "userId": uid}
|
163 |
-
)
|
164 |
-
await handle_websocket_data(websocket, uid)
|
165 |
-
except WebSocketDisconnect as e:
|
166 |
-
logging.error(f"WebSocket Error: {e}, {uid}")
|
167 |
-
traceback.print_exc()
|
168 |
-
finally:
|
169 |
-
print(f"User disconnected: {uid}")
|
170 |
-
queue_value = user_queue_map.pop(uid, None)
|
171 |
-
queue = queue_value.get("queue", None)
|
172 |
-
if queue:
|
173 |
-
while not queue.empty():
|
174 |
-
try:
|
175 |
-
queue.get_nowait()
|
176 |
-
except asyncio.QueueEmpty:
|
177 |
-
continue
|
178 |
-
|
179 |
-
|
180 |
-
@app.get("/queue_size")
|
181 |
-
async def get_queue_size():
|
182 |
-
queue_size = len(user_queue_map)
|
183 |
-
return JSONResponse({"queue_size": queue_size})
|
184 |
-
|
185 |
-
|
186 |
-
@app.get("/stream/{user_id}")
|
187 |
-
async def stream(user_id: uuid.UUID):
|
188 |
-
uid = str(user_id)
|
189 |
-
try:
|
190 |
-
user_queue = user_queue_map[uid]
|
191 |
-
queue = user_queue["queue"]
|
192 |
-
|
193 |
-
async def generate():
|
194 |
-
while True:
|
195 |
-
params = await queue.get()
|
196 |
-
if params is None:
|
197 |
-
continue
|
198 |
-
|
199 |
-
image = predict(params)
|
200 |
-
if image is None:
|
201 |
-
continue
|
202 |
-
frame_data = io.BytesIO()
|
203 |
-
image.save(frame_data, format="JPEG")
|
204 |
-
frame_data = frame_data.getvalue()
|
205 |
-
if frame_data is not None and len(frame_data) > 0:
|
206 |
-
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
|
207 |
-
|
208 |
-
await asyncio.sleep(1.0 / 120.0)
|
209 |
-
|
210 |
-
return StreamingResponse(
|
211 |
-
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
|
212 |
-
)
|
213 |
-
except Exception as e:
|
214 |
-
logging.error(f"Streaming Error: {e}, {user_queue_map}")
|
215 |
-
traceback.print_exc()
|
216 |
-
return HTTPException(status_code=404, detail="User not found")
|
217 |
-
|
218 |
-
|
219 |
-
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
|
220 |
-
uid = str(user_id)
|
221 |
-
user_queue = user_queue_map[uid]
|
222 |
-
queue = user_queue["queue"]
|
223 |
-
if not queue:
|
224 |
-
return HTTPException(status_code=404, detail="User not found")
|
225 |
-
last_time = time.time()
|
226 |
-
try:
|
227 |
-
while True:
|
228 |
-
params = await websocket.receive_json()
|
229 |
-
params = InputParams(**params)
|
230 |
-
while not queue.empty():
|
231 |
-
try:
|
232 |
-
queue.get_nowait()
|
233 |
-
except asyncio.QueueEmpty:
|
234 |
-
continue
|
235 |
-
await queue.put(params)
|
236 |
-
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
|
237 |
-
await websocket.send_json(
|
238 |
-
{
|
239 |
-
"status": "timeout",
|
240 |
-
"message": "Your session has ended",
|
241 |
-
"userId": uid,
|
242 |
-
}
|
243 |
-
)
|
244 |
-
await websocket.close()
|
245 |
-
return
|
246 |
-
|
247 |
-
except Exception as e:
|
248 |
-
logging.error(f"Error: {e}")
|
249 |
-
traceback.print_exc()
|
250 |
-
|
251 |
-
|
252 |
-
@app.get("/", response_class=HTMLResponse)
|
253 |
-
async def root():
|
254 |
-
return FileResponse("./static/txt2imglora.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frontend/src/lib/components/Checkbox.svelte
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
<script lang="ts">
|
2 |
import type { FieldProps } from '$lib/types';
|
|
|
3 |
export let value = false;
|
4 |
export let params: FieldProps;
|
|
|
|
|
|
|
5 |
</script>
|
6 |
|
7 |
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
|
|
1 |
<script lang="ts">
|
2 |
import type { FieldProps } from '$lib/types';
|
3 |
+
import { onMount } from 'svelte';
|
4 |
export let value = false;
|
5 |
export let params: FieldProps;
|
6 |
+
onMount(() => {
|
7 |
+
value = Boolean(params?.default) ?? 8.0;
|
8 |
+
});
|
9 |
</script>
|
10 |
|
11 |
<div class="grid max-w-md grid-cols-4 items-center justify-items-start gap-3">
|
frontend/src/lib/components/PipelineOptions.svelte
CHANGED
@@ -20,7 +20,7 @@
|
|
20 |
{#if params.field === FieldType.RANGE}
|
21 |
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
22 |
{:else if params.field === FieldType.SEED}
|
23 |
-
<SeedInput bind:value={$pipelineValues[params.id]}></SeedInput>
|
24 |
{:else if params.field === FieldType.TEXTAREA}
|
25 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
26 |
{:else if params.field === FieldType.CHECKBOX}
|
@@ -30,7 +30,7 @@
|
|
30 |
{/if}
|
31 |
</div>
|
32 |
|
33 |
-
<details
|
34 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
35 |
<div
|
36 |
class="grid grid-cols-1 items-center gap-3 {pipelineParams.length > 5 ? 'sm:grid-cols-2' : ''}"
|
@@ -40,7 +40,7 @@
|
|
40 |
{#if params.field === FieldType.RANGE}
|
41 |
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
42 |
{:else if params.field === FieldType.SEED}
|
43 |
-
<SeedInput bind:value={$pipelineValues[params.id]}></SeedInput>
|
44 |
{:else if params.field === FieldType.TEXTAREA}
|
45 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
46 |
{:else if params.field === FieldType.CHECKBOX}
|
|
|
20 |
{#if params.field === FieldType.RANGE}
|
21 |
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
22 |
{:else if params.field === FieldType.SEED}
|
23 |
+
<SeedInput {params} bind:value={$pipelineValues[params.id]}></SeedInput>
|
24 |
{:else if params.field === FieldType.TEXTAREA}
|
25 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
26 |
{:else if params.field === FieldType.CHECKBOX}
|
|
|
30 |
{/if}
|
31 |
</div>
|
32 |
|
33 |
+
<details>
|
34 |
<summary class="cursor-pointer font-medium">Advanced Options</summary>
|
35 |
<div
|
36 |
class="grid grid-cols-1 items-center gap-3 {pipelineParams.length > 5 ? 'sm:grid-cols-2' : ''}"
|
|
|
40 |
{#if params.field === FieldType.RANGE}
|
41 |
<InputRange {params} bind:value={$pipelineValues[params.id]}></InputRange>
|
42 |
{:else if params.field === FieldType.SEED}
|
43 |
+
<SeedInput {params} bind:value={$pipelineValues[params.id]}></SeedInput>
|
44 |
{:else if params.field === FieldType.TEXTAREA}
|
45 |
<TextArea {params} bind:value={$pipelineValues[params.id]}></TextArea>
|
46 |
{:else if params.field === FieldType.CHECKBOX}
|
frontend/src/lib/components/SeedInput.svelte
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
<script lang="ts">
|
|
|
|
|
2 |
import Button from './Button.svelte';
|
3 |
export let value = 299792458;
|
|
|
4 |
|
|
|
|
|
|
|
5 |
function randomize() {
|
6 |
value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER);
|
7 |
}
|
|
|
1 |
<script lang="ts">
|
2 |
+
import type { FieldProps } from '$lib/types';
|
3 |
+
import { onMount } from 'svelte';
|
4 |
import Button from './Button.svelte';
|
5 |
export let value = 299792458;
|
6 |
+
export let params: FieldProps;
|
7 |
|
8 |
+
onMount(() => {
|
9 |
+
value = Number(params?.default ?? '');
|
10 |
+
});
|
11 |
function randomize() {
|
12 |
value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER);
|
13 |
}
|
frontend/src/lib/types.ts
CHANGED
@@ -22,6 +22,9 @@ export interface FieldProps {
|
|
22 |
id: string;
|
23 |
}
|
24 |
export interface PipelineInfo {
|
|
|
|
|
|
|
25 |
name: string;
|
26 |
description: string;
|
27 |
input_mode: {
|
|
|
22 |
id: string;
|
23 |
}
|
24 |
export interface PipelineInfo {
|
25 |
+
title: {
|
26 |
+
default: string;
|
27 |
+
}
|
28 |
name: string;
|
29 |
description: string;
|
30 |
input_mode: {
|
frontend/src/routes/+page.svelte
CHANGED
@@ -78,6 +78,9 @@
|
|
78 |
<main class="container mx-auto flex max-w-4xl flex-col gap-3 px-4 py-4">
|
79 |
<article class="flex- mx-auto max-w-xl text-center">
|
80 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
|
|
|
|
|
|
81 |
<p class="py-2 text-sm">
|
82 |
This demo showcases
|
83 |
<a
|
|
|
78 |
<main class="container mx-auto flex max-w-4xl flex-col gap-3 px-4 py-4">
|
79 |
<article class="flex- mx-auto max-w-xl text-center">
|
80 |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
81 |
+
{#if pipelineInfo?.title?.default}
|
82 |
+
<h3 class="text-xl font-bold">{pipelineInfo?.title?.default}</h3>
|
83 |
+
{/if}
|
84 |
<p class="py-2 text-sm">
|
85 |
This demo showcases
|
86 |
<a
|
pipelines/txt2img.py
CHANGED
@@ -21,6 +21,7 @@ default_prompt = "Portrait of The Terminator with , glare pose, detailed, intric
|
|
21 |
class Pipeline:
|
22 |
class Info(BaseModel):
|
23 |
name: str = "txt2img"
|
|
|
24 |
description: str = "Generates an image from a text prompt"
|
25 |
input_mode: str = "text"
|
26 |
|
|
|
21 |
class Pipeline:
|
22 |
class Info(BaseModel):
|
23 |
name: str = "txt2img"
|
24 |
+
title: str = "txt2img"
|
25 |
description: str = "Generates an image from a text prompt"
|
26 |
input_mode: str = "text"
|
27 |
|
pipelines/txt2imglora.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny
|
2 |
from compel import Compel
|
3 |
import torch
|
4 |
|
@@ -9,85 +9,108 @@ except:
|
|
9 |
|
10 |
import psutil
|
11 |
from config import Args
|
12 |
-
from pydantic import BaseModel
|
13 |
from PIL import Image
|
14 |
-
from typing import Callable
|
15 |
|
16 |
-
base_model = "
|
17 |
-
WIDTH = 512
|
18 |
-
HEIGHT = 512
|
19 |
-
|
20 |
-
model_id = "wavymulder/Analog-Diffusion"
|
21 |
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
class Pipeline:
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class InputParams(BaseModel):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
def create_pipeline(
|
37 |
-
args: Args, device: torch.device, torch_dtype: torch.dtype
|
38 |
-
) -> Callable[["Pipeline.InputParams"], Image.Image]:
|
39 |
if args.safety_checker:
|
40 |
-
pipe = DiffusionPipeline.from_pretrained(base_model)
|
41 |
else:
|
42 |
-
pipe = DiffusionPipeline.from_pretrained(
|
|
|
|
|
43 |
if args.use_taesd:
|
44 |
-
pipe.vae = AutoencoderTiny.from_pretrained(
|
45 |
-
|
46 |
)
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
pipe.set_progress_bar_config(disable=True)
|
49 |
-
pipe.to(device=device, dtype=torch_dtype)
|
50 |
-
pipe.unet.to(memory_format=torch.channels_last)
|
51 |
-
|
52 |
-
# Load LCM LoRA
|
53 |
-
pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
54 |
# check if computer has less than 64GB of RAM using sys or os
|
55 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
56 |
-
pipe.enable_attention_slicing()
|
57 |
|
58 |
if args.torch_compile:
|
59 |
-
pipe.unet = torch.compile(
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
truncate_long_prompts=False,
|
68 |
)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
nsfw_content_detected
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
return None
|
91 |
-
return results.images[0]
|
92 |
-
|
93 |
-
return predict
|
|
|
1 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, LCMScheduler
|
2 |
from compel import Compel
|
3 |
import torch
|
4 |
|
|
|
9 |
|
10 |
import psutil
|
11 |
from config import Args
|
12 |
+
from pydantic import BaseModel, Field
|
13 |
from PIL import Image
|
|
|
14 |
|
15 |
+
base_model = "wavymulder/Analog-Diffusion"
|
|
|
|
|
|
|
|
|
16 |
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
|
17 |
+
taesd_model = "madebyollin/taesd"
|
18 |
+
|
19 |
+
default_prompt = "Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes"
|
20 |
|
21 |
|
22 |
class Pipeline:
|
23 |
+
class Info(BaseModel):
|
24 |
+
name: str = "txt2imglora"
|
25 |
+
title: str = "txt2imglora"
|
26 |
+
description: str = "Generates an image from a text prompt"
|
27 |
+
input_mode: str = "text"
|
28 |
+
|
29 |
class InputParams(BaseModel):
|
30 |
+
prompt: str = Field(
|
31 |
+
default_prompt,
|
32 |
+
title="Prompt",
|
33 |
+
field="textarea",
|
34 |
+
id="prompt",
|
35 |
+
)
|
36 |
+
seed: int = Field(
|
37 |
+
8638236174640251, min=0, title="Seed", field="seed", hide=True, id="seed"
|
38 |
+
)
|
39 |
+
steps: int = Field(
|
40 |
+
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps"
|
41 |
+
)
|
42 |
+
width: int = Field(
|
43 |
+
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
|
44 |
+
)
|
45 |
+
height: int = Field(
|
46 |
+
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
|
47 |
+
)
|
48 |
+
guidance_scale: float = Field(
|
49 |
+
0.2,
|
50 |
+
min=0,
|
51 |
+
max=4,
|
52 |
+
step=0.001,
|
53 |
+
title="Guidance Scale",
|
54 |
+
field="range",
|
55 |
+
hide=True,
|
56 |
+
id="guidance_scale",
|
57 |
+
)
|
58 |
|
59 |
+
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
|
|
|
|
60 |
if args.safety_checker:
|
61 |
+
self.pipe = DiffusionPipeline.from_pretrained(base_model)
|
62 |
else:
|
63 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
64 |
+
base_model, safety_checker=None
|
65 |
+
)
|
66 |
if args.use_taesd:
|
67 |
+
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
68 |
+
taesd_model, torch_dtype=torch_dtype, use_safetensors=True
|
69 |
)
|
70 |
+
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
|
71 |
+
self.pipe.set_progress_bar_config(disable=True)
|
72 |
+
self.pipe.to(device=device, dtype=torch_dtype)
|
73 |
+
self.pipe.unet.to(memory_format=torch.channels_last)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# check if computer has less than 64GB of RAM using sys or os
|
76 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
77 |
+
self.pipe.enable_attention_slicing()
|
78 |
|
79 |
if args.torch_compile:
|
80 |
+
self.pipe.unet = torch.compile(
|
81 |
+
self.pipe.unet, mode="reduce-overhead", fullgraph=True
|
82 |
+
)
|
83 |
+
self.pipe.vae = torch.compile(
|
84 |
+
self.pipe.vae, mode="reduce-overhead", fullgraph=True
|
85 |
+
)
|
86 |
|
87 |
+
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
88 |
|
89 |
+
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm")
|
90 |
+
|
91 |
+
self.compel_proc = Compel(
|
92 |
+
tokenizer=self.pipe.tokenizer,
|
93 |
+
text_encoder=self.pipe.text_encoder,
|
94 |
truncate_long_prompts=False,
|
95 |
)
|
96 |
|
97 |
+
def predict(self, params: "Pipeline.InputParams") -> Image.Image:
|
98 |
+
generator = torch.manual_seed(params.seed)
|
99 |
+
prompt_embeds = self.compel_proc(params.prompt)
|
100 |
+
results = self.pipe(
|
101 |
+
prompt_embeds=prompt_embeds,
|
102 |
+
generator=generator,
|
103 |
+
num_inference_steps=params.steps,
|
104 |
+
guidance_scale=params.guidance_scale,
|
105 |
+
width=params.width,
|
106 |
+
height=params.height,
|
107 |
+
output_type="pil",
|
108 |
+
)
|
109 |
+
nsfw_content_detected = (
|
110 |
+
results.nsfw_content_detected[0]
|
111 |
+
if "nsfw_content_detected" in results
|
112 |
+
else False
|
113 |
+
)
|
114 |
+
if nsfw_content_detected:
|
115 |
+
return None
|
116 |
+
return results.images[0]
|
|
|
|
|
|
|
|
static/txt2imglora.html
DELETED
@@ -1,279 +0,0 @@
|
|
1 |
-
<!doctype html>
|
2 |
-
<html>
|
3 |
-
|
4 |
-
<head>
|
5 |
-
<meta charset="UTF-8">
|
6 |
-
<title>Real-Time Latent Consistency Model</title>
|
7 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
8 |
-
<script
|
9 |
-
src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
|
10 |
-
<script src="https://cdn.jsdelivr.net/npm/piexifjs@1.0.6/piexif.min.js"></script>
|
11 |
-
<script src="https://cdn.tailwindcss.com"></script>
|
12 |
-
<style type="text/tailwindcss">
|
13 |
-
.button {
|
14 |
-
@apply bg-gray-700 hover:bg-gray-800 text-white font-normal p-2 rounded disabled:bg-gray-300 dark:disabled:bg-gray-700 disabled:cursor-not-allowed dark:disabled:text-black
|
15 |
-
}
|
16 |
-
</style>
|
17 |
-
<script type="module">
|
18 |
-
const getValue = (id) => {
|
19 |
-
const el = document.querySelector(`${id}`)
|
20 |
-
if (el.type === "checkbox")
|
21 |
-
return el.checked;
|
22 |
-
return el.value;
|
23 |
-
}
|
24 |
-
const startBtn = document.querySelector("#start");
|
25 |
-
const stopBtn = document.querySelector("#stop");
|
26 |
-
const videoEl = document.querySelector("#webcam");
|
27 |
-
const imageEl = document.querySelector("#player");
|
28 |
-
const queueSizeEl = document.querySelector("#queue_size");
|
29 |
-
const errorEl = document.querySelector("#error");
|
30 |
-
const snapBtn = document.querySelector("#snap");
|
31 |
-
const paramsEl = document.querySelector("#params");
|
32 |
-
const promptEl = document.querySelector("#prompt");
|
33 |
-
paramsEl.addEventListener("submit", (e) => e.preventDefault());
|
34 |
-
function LCMLive(promptEl, paramsEl, liveImage) {
|
35 |
-
let websocket;
|
36 |
-
|
37 |
-
async function start() {
|
38 |
-
return new Promise((resolve, reject) => {
|
39 |
-
const websocketURL = `${window.location.protocol === "https:" ? "wss" : "ws"
|
40 |
-
}:${window.location.host}/ws`;
|
41 |
-
|
42 |
-
const socket = new WebSocket(websocketURL);
|
43 |
-
socket.onopen = () => {
|
44 |
-
console.log("Connected to websocket");
|
45 |
-
};
|
46 |
-
socket.onclose = () => {
|
47 |
-
console.log("Disconnected from websocket");
|
48 |
-
stop();
|
49 |
-
resolve({ "status": "disconnected" });
|
50 |
-
};
|
51 |
-
socket.onerror = (err) => {
|
52 |
-
console.error(err);
|
53 |
-
reject(err);
|
54 |
-
};
|
55 |
-
socket.onmessage = (event) => {
|
56 |
-
const data = JSON.parse(event.data);
|
57 |
-
switch (data.status) {
|
58 |
-
case "success":
|
59 |
-
break;
|
60 |
-
case "start":
|
61 |
-
const userId = data.userId;
|
62 |
-
initPromptStream(userId);
|
63 |
-
break;
|
64 |
-
case "timeout":
|
65 |
-
stop();
|
66 |
-
resolve({ "status": "timeout" });
|
67 |
-
case "error":
|
68 |
-
stop();
|
69 |
-
reject(data.message);
|
70 |
-
}
|
71 |
-
};
|
72 |
-
websocket = socket;
|
73 |
-
})
|
74 |
-
}
|
75 |
-
|
76 |
-
async function promptUpdateStream(e) {
|
77 |
-
const [WIDTH, HEIGHT] = [512, 512];
|
78 |
-
websocket.send(JSON.stringify({
|
79 |
-
"seed": getValue("#seed"),
|
80 |
-
"prompt": getValue("#prompt"),
|
81 |
-
"guidance_scale": getValue("#guidance-scale"),
|
82 |
-
"steps": getValue("#steps"),
|
83 |
-
"width": WIDTH,
|
84 |
-
"height": HEIGHT,
|
85 |
-
}));
|
86 |
-
}
|
87 |
-
function debouceInput(fn, delay) {
|
88 |
-
let timer;
|
89 |
-
return function (...args) {
|
90 |
-
clearTimeout(timer);
|
91 |
-
timer = setTimeout(() => {
|
92 |
-
fn(...args);
|
93 |
-
}, delay);
|
94 |
-
}
|
95 |
-
}
|
96 |
-
const debouncedInput = debouceInput(promptUpdateStream, 200);
|
97 |
-
function initPromptStream(userId) {
|
98 |
-
liveImage.src = `/stream/${userId}`;
|
99 |
-
paramsEl.addEventListener("change", debouncedInput);
|
100 |
-
promptEl.addEventListener("input", debouncedInput);
|
101 |
-
}
|
102 |
-
|
103 |
-
async function stop() {
|
104 |
-
websocket.close();
|
105 |
-
paramsEl.removeEventListener("change", debouncedInput);
|
106 |
-
promptEl.removeEventListener("input", debouncedInput);
|
107 |
-
}
|
108 |
-
return {
|
109 |
-
start,
|
110 |
-
stop
|
111 |
-
}
|
112 |
-
}
|
113 |
-
function toggleMessage(type) {
|
114 |
-
errorEl.hidden = false;
|
115 |
-
errorEl.scrollIntoView();
|
116 |
-
switch (type) {
|
117 |
-
case "error":
|
118 |
-
errorEl.innerText = "To many users are using the same GPU, please try again later.";
|
119 |
-
errorEl.classList.toggle("bg-red-300", "text-red-900");
|
120 |
-
break;
|
121 |
-
case "success":
|
122 |
-
errorEl.innerText = "Your session has ended, please start a new one.";
|
123 |
-
errorEl.classList.toggle("bg-green-300", "text-green-900");
|
124 |
-
break;
|
125 |
-
}
|
126 |
-
setTimeout(() => {
|
127 |
-
errorEl.hidden = true;
|
128 |
-
}, 2000);
|
129 |
-
}
|
130 |
-
function snapImage() {
|
131 |
-
try {
|
132 |
-
const zeroth = {};
|
133 |
-
const exif = {};
|
134 |
-
const gps = {};
|
135 |
-
zeroth[piexif.ImageIFD.Make] = "LCM Text-to-Image";
|
136 |
-
zeroth[piexif.ImageIFD.ImageDescription] = `prompt: ${getValue("#prompt")} | seed: ${getValue("#seed")} | guidance_scale: ${getValue("#guidance-scale")} | steps: ${getValue("#steps")}`;
|
137 |
-
zeroth[piexif.ImageIFD.Software] = "https://github.com/radames/Real-Time-Latent-Consistency-Model";
|
138 |
-
|
139 |
-
exif[piexif.ExifIFD.DateTimeOriginal] = new Date().toISOString();
|
140 |
-
|
141 |
-
const exifObj = { "0th": zeroth, "Exif": exif, "GPS": gps };
|
142 |
-
const exifBytes = piexif.dump(exifObj);
|
143 |
-
|
144 |
-
const canvas = document.createElement("canvas");
|
145 |
-
canvas.width = imageEl.naturalWidth;
|
146 |
-
canvas.height = imageEl.naturalHeight;
|
147 |
-
const ctx = canvas.getContext("2d");
|
148 |
-
ctx.drawImage(imageEl, 0, 0);
|
149 |
-
const dataURL = canvas.toDataURL("image/jpeg");
|
150 |
-
const withExif = piexif.insert(exifBytes, dataURL);
|
151 |
-
|
152 |
-
const a = document.createElement("a");
|
153 |
-
a.href = withExif;
|
154 |
-
a.download = `lcm_txt_2_img${Date.now()}.png`;
|
155 |
-
a.click();
|
156 |
-
} catch (err) {
|
157 |
-
console.log(err);
|
158 |
-
}
|
159 |
-
}
|
160 |
-
|
161 |
-
|
162 |
-
const lcmLive = LCMLive(promptEl, paramsEl, imageEl);
|
163 |
-
startBtn.addEventListener("click", async () => {
|
164 |
-
try {
|
165 |
-
startBtn.disabled = true;
|
166 |
-
snapBtn.disabled = false;
|
167 |
-
const res = await lcmLive.start();
|
168 |
-
startBtn.disabled = false;
|
169 |
-
if (res.status === "timeout")
|
170 |
-
toggleMessage("success")
|
171 |
-
} catch (err) {
|
172 |
-
console.log(err);
|
173 |
-
toggleMessage("error")
|
174 |
-
startBtn.disabled = false;
|
175 |
-
}
|
176 |
-
});
|
177 |
-
stopBtn.addEventListener("click", () => {
|
178 |
-
lcmLive.stop();
|
179 |
-
});
|
180 |
-
window.addEventListener("beforeunload", () => {
|
181 |
-
lcmLive.stop();
|
182 |
-
});
|
183 |
-
snapBtn.addEventListener("click", snapImage);
|
184 |
-
setInterval(() =>
|
185 |
-
fetch("/queue_size")
|
186 |
-
.then((res) => res.json())
|
187 |
-
.then((data) => {
|
188 |
-
queueSizeEl.innerText = data.queue_size;
|
189 |
-
})
|
190 |
-
.catch((err) => {
|
191 |
-
console.log(err);
|
192 |
-
})
|
193 |
-
, 5000);
|
194 |
-
</script>
|
195 |
-
</head>
|
196 |
-
|
197 |
-
<body class="text-black dark:bg-gray-900 dark:text-white">
|
198 |
-
<div class="fixed right-2 top-2 p-4 font-bold text-sm rounded-lg max-w-xs text-center" id="error">
|
199 |
-
</div>
|
200 |
-
<main class="container mx-auto px-4 py-4 max-w-4xl flex flex-col gap-4">
|
201 |
-
<article class="text-center max-w-xl mx-auto">
|
202 |
-
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model</h1>
|
203 |
-
<h2 class="text-2xl font-bold mb-4">Text to Image Lora</h2>
|
204 |
-
<p class="text-sm">
|
205 |
-
This demo showcases
|
206 |
-
<a href="https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7" target="_blank"
|
207 |
-
class="text-blue-500 underline hover:no-underline">LCM</a> Text to Image model
|
208 |
-
using
|
209 |
-
<a href="https://github.com/huggingface/diffusers/tree/main/examples/community#latent-consistency-pipeline"
|
210 |
-
target="_blank" class="text-blue-500 underline hover:no-underline">Diffusers</a> with a MJPEG
|
211 |
-
stream server. Featuring <a href="https://huggingface.co/wavymulder/Analog-Diffusion" target="_blank"
|
212 |
-
class="text-blue-500 underline hover:no-underline">Analog Diffusion</a> Model.
|
213 |
-
</p>
|
214 |
-
<p class="text-sm">
|
215 |
-
There are <span id="queue_size" class="font-bold">0</span> user(s) sharing the same GPU, affecting
|
216 |
-
real-time performance.
|
217 |
-
</p>
|
218 |
-
</article>
|
219 |
-
<div>
|
220 |
-
<h2 class="font-medium">Prompt</h2>
|
221 |
-
<p class="text-sm text-gray-500 dark:text-gray-400">
|
222 |
-
Start your session and type your prompt here, accepts
|
223 |
-
<a href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" target="_blank"
|
224 |
-
class="text-blue-500 underline hover:no-underline">Compel</a> syntax.
|
225 |
-
</p>
|
226 |
-
<div class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
|
227 |
-
<textarea type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 outline-none dark:text-black"
|
228 |
-
title=" Start your session and type your prompt here, you can see the result in real-time."
|
229 |
-
placeholder="Add your prompt here...">Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes</textarea>
|
230 |
-
</div>
|
231 |
-
|
232 |
-
</div>
|
233 |
-
<div class="">
|
234 |
-
<details>
|
235 |
-
<summary class="font-medium cursor-pointer">Advanced Options</summary>
|
236 |
-
<form class="grid grid-cols-3 items-center gap-3 py-3" id="params" action="">
|
237 |
-
<label class="text-sm font-medium " for="steps">Inference Steps
|
238 |
-
</label>
|
239 |
-
<input type="range" id="steps" name="steps" min="2" max="10" value="4"
|
240 |
-
oninput="this.nextElementSibling.value = Number(this.value)">
|
241 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
242 |
-
4</output>
|
243 |
-
<label class="text-sm font-medium" for="guidance-scale">Guidance Scale
|
244 |
-
</label>
|
245 |
-
<input type="range" id="guidance-scale" name="guidance-scale" min="0" max="5" step="0.0001"
|
246 |
-
value="0.8" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)">
|
247 |
-
<output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
|
248 |
-
0.8</output>
|
249 |
-
<!-- -->
|
250 |
-
<label class="text-sm font-medium" for="seed">Seed</label>
|
251 |
-
<input type="number" id="seed" name="seed" value="299792458"
|
252 |
-
class="font-light border border-gray-700 text-right rounded-md p-2 dark:text-black">
|
253 |
-
<button class="button"
|
254 |
-
onclick="document.querySelector('#seed').value = Math.floor(Math.random() * 1000000000); document.querySelector('#params').dispatchEvent(new Event('change'))">
|
255 |
-
Rand
|
256 |
-
</button>
|
257 |
-
<!-- -->
|
258 |
-
</form>
|
259 |
-
</details>
|
260 |
-
</div>
|
261 |
-
<div class="flex gap-3">
|
262 |
-
<button id="start" class="button">
|
263 |
-
Start
|
264 |
-
</button>
|
265 |
-
<button id="stop" class="button">
|
266 |
-
Stop
|
267 |
-
</button>
|
268 |
-
<button id="snap" disabled class="button ml-auto">
|
269 |
-
Snapshot
|
270 |
-
</button>
|
271 |
-
</div>
|
272 |
-
<div class="relative rounded-lg border border-slate-300 overflow-hidden">
|
273 |
-
<img id="player" class="w-full aspect-square rounded-lg"
|
274 |
-
src="">
|
275 |
-
</div>
|
276 |
-
</main>
|
277 |
-
</body>
|
278 |
-
|
279 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|