|
from diffusers import DiffusionPipeline, AutoencoderTiny, LCMScheduler |
|
from compel import Compel |
|
import torch |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
except: |
|
pass |
|
|
|
import psutil |
|
from config import Args |
|
from pydantic import BaseModel, Field |
|
from PIL import Image |
|
|
|
base_model = "wavymulder/Analog-Diffusion" |
|
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" |
|
taesd_model = "madebyollin/taesd" |
|
|
|
default_prompt = "Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes" |
|
|
|
page_content = """ |
|
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDv1.5</h1> |
|
<h3 class="text-xl font-bold">Text-to-Image LCM + LoRa</h3> |
|
<p class="text-sm"> |
|
This demo showcases |
|
<a |
|
href="https://huggingface.co/blog/lcm_lora" |
|
target="_blank" |
|
class="text-blue-500 underline hover:no-underline">LCM</a> |
|
Image to Image pipeline using |
|
<a |
|
href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm" |
|
target="_blank" |
|
class="text-blue-500 underline hover:no-underline">Diffusers</a |
|
> with a MJPEG stream server. Featuring <a |
|
href="https://huggingface.co/wavymulder/Analog-Diffusion" |
|
target="_blank" |
|
class="text-blue-500 underline hover:no-underline">Analog-Diffusion</a> |
|
</p> |
|
<p class="text-sm text-gray-500"> |
|
Change the prompt to generate different images, accepts <a |
|
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" |
|
target="_blank" |
|
class="text-blue-500 underline hover:no-underline">Compel</a |
|
> syntax. |
|
</p> |
|
""" |
|
|
|
|
|
class Pipeline: |
|
class Info(BaseModel): |
|
name: str = "controlnet" |
|
title: str = "Text-to-Image LCM + LoRa" |
|
description: str = "Generates an image from a text prompt" |
|
input_mode: str = "text" |
|
page_content: str = page_content |
|
|
|
class InputParams(BaseModel): |
|
prompt: str = Field( |
|
default_prompt, |
|
title="Prompt", |
|
field="textarea", |
|
id="prompt", |
|
) |
|
seed: int = Field( |
|
8638236174640251, min=0, title="Seed", field="seed", hide=True, id="seed" |
|
) |
|
steps: int = Field( |
|
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps" |
|
) |
|
width: int = Field( |
|
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" |
|
) |
|
height: int = Field( |
|
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" |
|
) |
|
guidance_scale: float = Field( |
|
0.2, |
|
min=0, |
|
max=4, |
|
step=0.001, |
|
title="Guidance Scale", |
|
field="range", |
|
hide=True, |
|
id="guidance_scale", |
|
) |
|
|
|
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): |
|
if args.safety_checker: |
|
self.pipe = DiffusionPipeline.from_pretrained(base_model) |
|
else: |
|
self.pipe = DiffusionPipeline.from_pretrained( |
|
base_model, safety_checker=None |
|
) |
|
if args.taesd: |
|
self.pipe.vae = AutoencoderTiny.from_pretrained( |
|
taesd_model, torch_dtype=torch_dtype, use_safetensors=True |
|
).to(device) |
|
|
|
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) |
|
self.pipe.set_progress_bar_config(disable=True) |
|
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") |
|
self.pipe.to(device=device, dtype=torch_dtype) |
|
|
|
if device.type != "mps": |
|
self.pipe.unet.to(memory_format=torch.channels_last) |
|
|
|
if args.torch_compile: |
|
self.pipe.unet = torch.compile( |
|
self.pipe.unet, mode="reduce-overhead", fullgraph=True |
|
) |
|
self.pipe.vae = torch.compile( |
|
self.pipe.vae, mode="reduce-overhead", fullgraph=True |
|
) |
|
|
|
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) |
|
|
|
if args.sfast: |
|
from sfast.compilers.stable_diffusion_pipeline_compiler import ( |
|
compile, |
|
CompilationConfig, |
|
) |
|
|
|
config = CompilationConfig.Default() |
|
config.enable_xformers = True |
|
config.enable_triton = True |
|
config.enable_cuda_graph = True |
|
self.pipe = compile(self.pipe, config=config) |
|
|
|
if args.compel: |
|
self.compel_proc = Compel( |
|
tokenizer=self.pipe.tokenizer, |
|
text_encoder=self.pipe.text_encoder, |
|
truncate_long_prompts=False, |
|
) |
|
|
|
def predict(self, params: "Pipeline.InputParams") -> Image.Image: |
|
generator = torch.manual_seed(params.seed) |
|
prompt_embeds = None |
|
prompt = params.prompt |
|
if hasattr(self, "compel_proc"): |
|
prompt_embeds = self.compel_proc(params.prompt) |
|
prompt = None |
|
|
|
results = self.pipe( |
|
prompt=prompt, |
|
prompt_embeds=prompt_embeds, |
|
generator=generator, |
|
num_inference_steps=params.steps, |
|
guidance_scale=params.guidance_scale, |
|
width=params.width, |
|
height=params.height, |
|
output_type="pil", |
|
) |
|
nsfw_content_detected = ( |
|
results.nsfw_content_detected[0] |
|
if "nsfw_content_detected" in results |
|
else False |
|
) |
|
if nsfw_content_detected: |
|
return None |
|
return results.images[0] |
|
|