|
import torch |
|
import torch.nn as nn |
|
from torchvision.transforms import ToTensor, ToPILImage |
|
from PIL import Image |
|
|
|
class SobelOperator(nn.Module): |
|
def __init__(self, device="cuda"): |
|
super(SobelOperator, self).__init__() |
|
self.device = device |
|
self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( |
|
self.device |
|
) |
|
self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to( |
|
self.device |
|
) |
|
|
|
sobel_kernel_x = torch.tensor( |
|
[[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=self.device |
|
) |
|
sobel_kernel_y = torch.tensor( |
|
[[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]], device=self.device |
|
) |
|
|
|
self.edge_conv_x.weight = nn.Parameter(sobel_kernel_x.view((1, 1, 3, 3))) |
|
self.edge_conv_y.weight = nn.Parameter(sobel_kernel_y.view((1, 1, 3, 3))) |
|
|
|
@torch.no_grad() |
|
def forward(self, image: Image.Image, low_threshold: float, high_threshold: float): |
|
|
|
image_gray = image.convert("L") |
|
image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device) |
|
|
|
|
|
edge_x = self.edge_conv_x(image_tensor) |
|
edge_y = self.edge_conv_y(image_tensor) |
|
edge = torch.sqrt(edge_x**2 + edge_y**2) |
|
|
|
|
|
edge = edge / edge.max() |
|
edge[edge >= high_threshold] = 1.0 |
|
edge[edge <= low_threshold] = 0.0 |
|
|
|
|
|
return ToPILImage()(edge.squeeze(0).cpu()) |
|
|