radames's picture
initial commit
c7f097c
raw
history blame
15.8 kB
import torch
from torch.nn import init
import torch.nn as nn
import torch.nn.functional as F
import functools
import numpy as np
from .mesh_util import *
from .sample_util import *
from .geometry import index
import cv2
from PIL import Image
from tqdm import tqdm
def reshape_multiview_tensors(image_tensor, calib_tensor):
# Careful here! Because we put single view and multiview together,
# the returned tensor.shape is 5-dim: [B, num_views, C, W, H]
# So we need to convert it back to 4-dim [B*num_views, C, W, H]
# Don't worry classifier will handle multi-view cases
image_tensor = image_tensor.view(
image_tensor.shape[0] * image_tensor.shape[1],
image_tensor.shape[2],
image_tensor.shape[3],
image_tensor.shape[4]
)
calib_tensor = calib_tensor.view(
calib_tensor.shape[0] * calib_tensor.shape[1],
calib_tensor.shape[2],
calib_tensor.shape[3]
)
return image_tensor, calib_tensor
def reshape_sample_tensor(sample_tensor, num_views):
if num_views == 1:
return sample_tensor
# Need to repeat sample_tensor along the batch dim num_views times
sample_tensor = sample_tensor.unsqueeze(dim=1)
sample_tensor = sample_tensor.repeat(1, num_views, 1, 1)
sample_tensor = sample_tensor.view(
sample_tensor.shape[0] * sample_tensor.shape[1],
sample_tensor.shape[2],
sample_tensor.shape[3]
)
return sample_tensor
def gen_mesh(opt, net, cuda, data, save_path, use_octree=True):
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
net.filter(image_tensor)
b_min = data['b_min']
b_max = data['b_max']
try:
save_img_path = save_path[:-4] + '.png'
save_img_list = []
for v in range(image_tensor.shape[0]):
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
save_img_list.append(save_img)
save_img = np.concatenate(save_img_list, axis=1)
Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path)
verts, faces, _, _ = reconstruction(
net, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree)
verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()
xyz_tensor = net.projection(verts_tensor, calib_tensor[:1])
uv = xyz_tensor[:, :2, :]
color = index(image_tensor[:1], uv).detach().cpu().numpy()[0].T
color = color * 0.5 + 0.5
save_obj_mesh_with_color(save_path, verts, faces, color)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
def gen_mesh_color(opt, netG, netC, cuda, data, save_path, use_octree=True):
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
netG.filter(image_tensor)
netC.filter(image_tensor)
netC.attach(netG.get_im_feat())
b_min = data['b_min']
b_max = data['b_max']
try:
save_img_path = save_path[:-4] + '.png'
save_img_list = []
for v in range(image_tensor.shape[0]):
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
save_img_list.append(save_img)
save_img = np.concatenate(save_img_list, axis=1)
Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path)
verts, faces, _, _ = reconstruction(
netG, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree)
# Now Getting colors
verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()
verts_tensor = reshape_sample_tensor(verts_tensor, opt.num_views)
color = np.zeros(verts.shape)
interval = opt.num_sample_color
for i in range(len(color) // interval):
left = i * interval
right = i * interval + interval
if i == len(color) // interval - 1:
right = -1
netC.query(verts_tensor[:, :, left:right], calib_tensor)
rgb = netC.get_preds()[0].detach().cpu().numpy() * 0.5 + 0.5
color[left:right] = rgb.T
save_obj_mesh_with_color(save_path, verts, faces, color)
except Exception as e:
print(e)
print('Can not create marching cubes at this time.')
def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma):
"""Sets the learning rate to the initial LR decayed by schedule"""
if epoch in schedule:
lr *= gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def compute_acc(pred, gt, thresh=0.5):
'''
return:
IOU, precision, and recall
'''
with torch.no_grad():
vol_pred = pred > thresh
vol_gt = gt > thresh
union = vol_pred | vol_gt
inter = vol_pred & vol_gt
true_pos = inter.sum().float()
union = union.sum().float()
if union == 0:
union = 1
vol_pred = vol_pred.sum().float()
if vol_pred == 0:
vol_pred = 1
vol_gt = vol_gt.sum().float()
if vol_gt == 0:
vol_gt = 1
return true_pos / union, true_pos / vol_pred, true_pos / vol_gt
def calc_error(opt, net, cuda, dataset, num_tests):
if num_tests > len(dataset):
num_tests = len(dataset)
with torch.no_grad():
erorr_arr, IOU_arr, prec_arr, recall_arr = [], [], [], []
for idx in tqdm(range(num_tests)):
data = dataset[idx * len(dataset) // num_tests]
# retrieve the data
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
sample_tensor = data['samples'].to(device=cuda).unsqueeze(0)
if opt.num_views > 1:
sample_tensor = reshape_sample_tensor(sample_tensor, opt.num_views)
label_tensor = data['labels'].to(device=cuda).unsqueeze(0)
res, error = net.forward(image_tensor, sample_tensor, calib_tensor, labels=label_tensor)
IOU, prec, recall = compute_acc(res, label_tensor)
# print(
# '{0}/{1} | Error: {2:06f} IOU: {3:06f} prec: {4:06f} recall: {5:06f}'
# .format(idx, num_tests, error.item(), IOU.item(), prec.item(), recall.item()))
erorr_arr.append(error.item())
IOU_arr.append(IOU.item())
prec_arr.append(prec.item())
recall_arr.append(recall.item())
return np.average(erorr_arr), np.average(IOU_arr), np.average(prec_arr), np.average(recall_arr)
def calc_error_color(opt, netG, netC, cuda, dataset, num_tests):
if num_tests > len(dataset):
num_tests = len(dataset)
with torch.no_grad():
error_color_arr = []
for idx in tqdm(range(num_tests)):
data = dataset[idx * len(dataset) // num_tests]
# retrieve the data
image_tensor = data['img'].to(device=cuda)
calib_tensor = data['calib'].to(device=cuda)
color_sample_tensor = data['color_samples'].to(device=cuda).unsqueeze(0)
if opt.num_views > 1:
color_sample_tensor = reshape_sample_tensor(color_sample_tensor, opt.num_views)
rgb_tensor = data['rgbs'].to(device=cuda).unsqueeze(0)
netG.filter(image_tensor)
_, errorC = netC.forward(image_tensor, netG.get_im_feat(), color_sample_tensor, calib_tensor, labels=rgb_tensor)
# print('{0}/{1} | Error inout: {2:06f} | Error color: {3:06f}'
# .format(idx, num_tests, errorG.item(), errorC.item()))
error_color_arr.append(errorC.item())
return np.average(error_color_arr)
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=strd, padding=padding, bias=bias)
def init_weights(net, init_type='normal', init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find(
'BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if len(gpu_ids) > 0:
assert (torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
init_weights(net, init_type, init_gain=init_gain)
return net
def imageSpaceRotation(xy, rot):
'''
args:
xy: (B, 2, N) input
rot: (B, 2) x,y axis rotation angles
rotation center will be always image center (other rotation center can be represented by additional z translation)
'''
disp = rot.unsqueeze(2).sin().expand_as(xy)
return (disp * xy).sum(dim=1)
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
Arguments:
netD (network) -- discriminator network
real_data (tensor array) -- real images
fake_data (tensor array) -- generated images from the generator
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
type (str) -- if we mix real and fake data or not [real | fake | mixed].
constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2
lambda_gp (float) -- weight for this loss
Returns the gradient penalty loss
"""
if lambda_gp > 0.0:
if type == 'real': # either use real images, fake images, or a linear interpolation of two.
interpolatesv = real_data
elif type == 'fake':
interpolatesv = fake_data
elif type == 'mixed':
alpha = torch.rand(real_data.shape[0], 1)
alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(
*real_data.shape)
alpha = alpha.to(device)
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
else:
raise NotImplementedError('{} not implemented'.format(type))
interpolatesv.requires_grad_(True)
disc_interpolates = netD(interpolatesv)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
return gradient_penalty, gradients
else:
return 0.0, None
def get_norm_layer(norm_type='instance'):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == 'group':
norm_layer = functools.partial(nn.GroupNorm, 32)
elif norm_type == 'none':
norm_layer = None
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes, norm='batch'):
super(ConvBlock, self).__init__()
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
if norm == 'batch':
self.bn1 = nn.BatchNorm2d(in_planes)
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.bn4 = nn.BatchNorm2d(in_planes)
elif norm == 'group':
self.bn1 = nn.GroupNorm(32, in_planes)
self.bn2 = nn.GroupNorm(32, int(out_planes / 2))
self.bn3 = nn.GroupNorm(32, int(out_planes / 4))
self.bn4 = nn.GroupNorm(32, in_planes)
if in_planes != out_planes:
self.downsample = nn.Sequential(
self.bn4,
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes,
kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3