Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..geometry import index, orthogonal, perspective | |
class BasePIFuNet(nn.Module): | |
def __init__(self, | |
projection_mode='orthogonal', | |
error_term=nn.MSELoss(), | |
): | |
""" | |
:param projection_mode: | |
Either orthogonal or perspective. | |
It will call the corresponding function for projection. | |
:param error_term: | |
nn Loss between the predicted [B, Res, N] and the label [B, Res, N] | |
""" | |
super(BasePIFuNet, self).__init__() | |
self.name = 'base' | |
self.error_term = error_term | |
self.index = index | |
self.projection = orthogonal if projection_mode == 'orthogonal' else perspective | |
self.preds = None | |
self.labels = None | |
def forward(self, points, images, calibs, transforms=None): | |
''' | |
:param points: [B, 3, N] world space coordinates of points | |
:param images: [B, C, H, W] input images | |
:param calibs: [B, 3, 4] calibration matrices for each image | |
:param transforms: Optional [B, 2, 3] image space coordinate transforms | |
:return: [B, Res, N] predictions for each point | |
''' | |
self.filter(images) | |
self.query(points, calibs, transforms) | |
return self.get_preds() | |
def filter(self, images): | |
''' | |
Filter the input images | |
store all intermediate features. | |
:param images: [B, C, H, W] input images | |
''' | |
None | |
def query(self, points, calibs, transforms=None, labels=None): | |
''' | |
Given 3D points, query the network predictions for each point. | |
Image features should be pre-computed before this call. | |
store all intermediate features. | |
query() function may behave differently during training/testing. | |
:param points: [B, 3, N] world space coordinates of points | |
:param calibs: [B, 3, 4] calibration matrices for each image | |
:param transforms: Optional [B, 2, 3] image space coordinate transforms | |
:param labels: Optional [B, Res, N] gt labeling | |
:return: [B, Res, N] predictions for each point | |
''' | |
None | |
def get_preds(self): | |
''' | |
Get the predictions from the last query | |
:return: [B, Res, N] network prediction for the last query | |
''' | |
return self.preds | |
def get_error(self): | |
''' | |
Get the network loss from the last query | |
:return: loss term | |
''' | |
return self.error_term(self.preds, self.labels) | |