Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from .mesh_util import * | |
from .sample_util import * | |
from .geometry import * | |
import cv2 | |
from PIL import Image | |
from tqdm import tqdm | |
def reshape_multiview_tensors(image_tensor, calib_tensor): | |
# Careful here! Because we put single view and multiview together, | |
# the returned tensor.shape is 5-dim: [B, num_views, C, W, H] | |
# So we need to convert it back to 4-dim [B*num_views, C, W, H] | |
# Don't worry classifier will handle multi-view cases | |
image_tensor = image_tensor.view( | |
image_tensor.shape[0] * image_tensor.shape[1], | |
image_tensor.shape[2], | |
image_tensor.shape[3], | |
image_tensor.shape[4] | |
) | |
calib_tensor = calib_tensor.view( | |
calib_tensor.shape[0] * calib_tensor.shape[1], | |
calib_tensor.shape[2], | |
calib_tensor.shape[3] | |
) | |
return image_tensor, calib_tensor | |
def reshape_sample_tensor(sample_tensor, num_views): | |
if num_views == 1: | |
return sample_tensor | |
# Need to repeat sample_tensor along the batch dim num_views times | |
sample_tensor = sample_tensor.unsqueeze(dim=1) | |
sample_tensor = sample_tensor.repeat(1, num_views, 1, 1) | |
sample_tensor = sample_tensor.view( | |
sample_tensor.shape[0] * sample_tensor.shape[1], | |
sample_tensor.shape[2], | |
sample_tensor.shape[3] | |
) | |
return sample_tensor | |
def gen_mesh(opt, net, cuda, data, save_path, use_octree=True): | |
image_tensor = data['img'].to(device=cuda) | |
calib_tensor = data['calib'].to(device=cuda) | |
net.filter(image_tensor) | |
b_min = data['b_min'] | |
b_max = data['b_max'] | |
try: | |
save_img_path = save_path[:-4] + '.png' | |
save_img_list = [] | |
for v in range(image_tensor.shape[0]): | |
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0 | |
save_img_list.append(save_img) | |
save_img = np.concatenate(save_img_list, axis=1) | |
Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path) | |
verts, faces, _, _ = reconstruction( | |
net, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree) | |
verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float() | |
xyz_tensor = net.projection(verts_tensor, calib_tensor[:1]) | |
uv = xyz_tensor[:, :2, :] | |
color = index(image_tensor[:1], uv).detach().cpu().numpy()[0].T | |
color = color * 0.5 + 0.5 | |
save_obj_mesh_with_color(save_path, verts, faces, color) | |
except Exception as e: | |
print(e) | |
print('Can not create marching cubes at this time.') | |
def gen_mesh_color(opt, netG, netC, cuda, data, save_path, use_octree=True): | |
image_tensor = data['img'].to(device=cuda) | |
calib_tensor = data['calib'].to(device=cuda) | |
netG.filter(image_tensor) | |
netC.filter(image_tensor) | |
netC.attach(netG.get_im_feat()) | |
b_min = data['b_min'] | |
b_max = data['b_max'] | |
try: | |
save_img_path = save_path[:-4] + '.png' | |
save_img_list = [] | |
for v in range(image_tensor.shape[0]): | |
save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0 | |
save_img_list.append(save_img) | |
save_img = np.concatenate(save_img_list, axis=1) | |
Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path) | |
verts, faces, _, _ = reconstruction( | |
netG, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree) | |
# Now Getting colors | |
verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float() | |
verts_tensor = reshape_sample_tensor(verts_tensor, opt.num_views) | |
color = np.zeros(verts.shape) | |
interval = 10000 | |
for i in range(len(color) // interval): | |
left = i * interval | |
right = i * interval + interval | |
if i == len(color) // interval - 1: | |
right = -1 | |
netC.query(verts_tensor[:, :, left:right], calib_tensor) | |
rgb = netC.get_preds()[0].detach().cpu().numpy() * 0.5 + 0.5 | |
color[left:right] = rgb.T | |
save_obj_mesh_with_color(save_path, verts, faces, color) | |
except Exception as e: | |
print(e) | |
print('Can not create marching cubes at this time.') | |
def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma): | |
"""Sets the learning rate to the initial LR decayed by schedule""" | |
if epoch in schedule: | |
lr *= gamma | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
return lr | |
def compute_acc(pred, gt, thresh=0.5): | |
''' | |
return: | |
IOU, precision, and recall | |
''' | |
with torch.no_grad(): | |
vol_pred = pred > thresh | |
vol_gt = gt > thresh | |
union = vol_pred | vol_gt | |
inter = vol_pred & vol_gt | |
true_pos = inter.sum().float() | |
union = union.sum().float() | |
if union == 0: | |
union = 1 | |
vol_pred = vol_pred.sum().float() | |
if vol_pred == 0: | |
vol_pred = 1 | |
vol_gt = vol_gt.sum().float() | |
if vol_gt == 0: | |
vol_gt = 1 | |
return true_pos / union, true_pos / vol_pred, true_pos / vol_gt | |
def calc_error(opt, net, cuda, dataset, num_tests): | |
if num_tests > len(dataset): | |
num_tests = len(dataset) | |
with torch.no_grad(): | |
erorr_arr, IOU_arr, prec_arr, recall_arr = [], [], [], [] | |
for idx in tqdm(range(num_tests)): | |
data = dataset[idx * len(dataset) // num_tests] | |
# retrieve the data | |
image_tensor = data['img'].to(device=cuda) | |
calib_tensor = data['calib'].to(device=cuda) | |
sample_tensor = data['samples'].to(device=cuda).unsqueeze(0) | |
if opt.num_views > 1: | |
sample_tensor = reshape_sample_tensor(sample_tensor, opt.num_views) | |
label_tensor = data['labels'].to(device=cuda).unsqueeze(0) | |
res, error = net.forward(image_tensor, sample_tensor, calib_tensor, labels=label_tensor) | |
IOU, prec, recall = compute_acc(res, label_tensor) | |
# print( | |
# '{0}/{1} | Error: {2:06f} IOU: {3:06f} prec: {4:06f} recall: {5:06f}' | |
# .format(idx, num_tests, error.item(), IOU.item(), prec.item(), recall.item())) | |
erorr_arr.append(error.item()) | |
IOU_arr.append(IOU.item()) | |
prec_arr.append(prec.item()) | |
recall_arr.append(recall.item()) | |
return np.average(erorr_arr), np.average(IOU_arr), np.average(prec_arr), np.average(recall_arr) | |
def calc_error_color(opt, netG, netC, cuda, dataset, num_tests): | |
if num_tests > len(dataset): | |
num_tests = len(dataset) | |
with torch.no_grad(): | |
error_color_arr = [] | |
for idx in tqdm(range(num_tests)): | |
data = dataset[idx * len(dataset) // num_tests] | |
# retrieve the data | |
image_tensor = data['img'].to(device=cuda) | |
calib_tensor = data['calib'].to(device=cuda) | |
color_sample_tensor = data['color_samples'].to(device=cuda).unsqueeze(0) | |
if opt.num_views > 1: | |
color_sample_tensor = reshape_sample_tensor(color_sample_tensor, opt.num_views) | |
rgb_tensor = data['rgbs'].to(device=cuda).unsqueeze(0) | |
netG.filter(image_tensor) | |
_, errorC = netC.forward(image_tensor, netG.get_im_feat(), color_sample_tensor, calib_tensor, labels=rgb_tensor) | |
# print('{0}/{1} | Error inout: {2:06f} | Error color: {3:06f}' | |
# .format(idx, num_tests, errorG.item(), errorC.item())) | |
error_color_arr.append(errorC.item()) | |
return np.average(error_color_arr) | |