Spaces:
Runtime error
Runtime error
import random | |
import numpy as np | |
from skimage.filters import gaussian | |
import torch | |
from PIL import Image, ImageFilter | |
class RandomVerticalFlip(object): | |
def __call__(self, img): | |
if random.random() < 0.5: | |
return img.transpose(Image.FLIP_TOP_BOTTOM) | |
return img | |
class DeNormalize(object): | |
def __init__(self, mean, std): | |
self.mean = mean | |
self.std = std | |
def __call__(self, tensor): | |
for t, m, s in zip(tensor, self.mean, self.std): | |
t.mul_(s).add_(m) | |
return tensor | |
class MaskToTensor(object): | |
def __call__(self, img): | |
return torch.from_numpy(np.array(img, dtype=np.int32)).long() | |
class FreeScale(object): | |
def __init__(self, size, interpolation=Image.BILINEAR): | |
self.size = tuple(reversed(size)) # size: (h, w) | |
self.interpolation = interpolation | |
def __call__(self, img): | |
return img.resize(self.size, self.interpolation) | |
class FlipChannels(object): | |
def __call__(self, img): | |
img = np.array(img)[:, :, ::-1] | |
return Image.fromarray(img.astype(np.uint8)) | |
class RandomGaussianBlur(object): | |
def __call__(self, img): | |
sigma = 0.15 + random.random() * 1.15 | |
blurred_img = gaussian(np.array(img), sigma=sigma, multichannel=True) | |
blurred_img *= 255 | |
return Image.fromarray(blurred_img.astype(np.uint8)) | |
# Lighting data augmentation take from here - https://github.com/eladhoffer/convNet.pytorch/blob/master/preprocess.py | |
class Lighting(object): | |
"""Lighting noise(AlexNet - style PCA - based noise)""" | |
def __init__(self, alphastd, | |
eigval=(0.2175, 0.0188, 0.0045), | |
eigvec=((-0.5675, 0.7192, 0.4009), | |
(-0.5808, -0.0045, -0.8140), | |
(-0.5836, -0.6948, 0.4203))): | |
self.alphastd = alphastd | |
self.eigval = torch.Tensor(eigval) | |
self.eigvec = torch.Tensor(eigvec) | |
def __call__(self, img): | |
if self.alphastd == 0: | |
return img | |
alpha = img.new().resize_(3).normal_(0, self.alphastd) | |
rgb = self.eigvec.type_as(img).clone()\ | |
.mul(alpha.view(1, 3).expand(3, 3))\ | |
.mul(self.eigval.view(1, 3).expand(3, 3))\ | |
.sum(1).squeeze() | |
return img.add(rgb.view(3, 1, 1).expand_as(img)) | |