Spaces:
Runtime error
Runtime error
from torch.utils.data import Dataset | |
import random | |
class BaseDataset(Dataset): | |
''' | |
This is the Base Datasets. | |
Itself does nothing and is not runnable. | |
Check self.get_item function to see what it should return. | |
''' | |
def modify_commandline_options(parser, is_train): | |
return parser | |
def __init__(self, opt, phase='train'): | |
self.opt = opt | |
self.is_train = self.phase == 'train' | |
self.projection_mode = 'orthogonal' # Declare projection mode here | |
def __len__(self): | |
return 0 | |
def get_item(self, index): | |
# In case of a missing file or IO error, switch to a random sample instead | |
try: | |
res = { | |
'name': None, # name of this subject | |
'b_min': None, # Bounding box (x_min, y_min, z_min) of target space | |
'b_max': None, # Bounding box (x_max, y_max, z_max) of target space | |
'samples': None, # [3, N] samples | |
'labels': None, # [1, N] labels | |
'img': None, # [num_views, C, H, W] input images | |
'calib': None, # [num_views, 4, 4] calibration matrix | |
'extrinsic': None, # [num_views, 4, 4] extrinsic matrix | |
'mask': None, # [num_views, 1, H, W] segmentation masks | |
} | |
return res | |
except: | |
print("Requested index %s has missing files. Using a random sample instead." % index) | |
return self.get_item(index=random.randint(0, self.__len__() - 1)) | |
def __getitem__(self, index): | |
return self.get_item(index) | |