Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .BasePIFuNet import BasePIFuNet | |
import functools | |
from .SurfaceClassifier import SurfaceClassifier | |
from .DepthNormalizer import DepthNormalizer | |
from ..net_util import * | |
class ResBlkPIFuNet(BasePIFuNet): | |
def __init__(self, opt, | |
projection_mode='orthogonal'): | |
if opt.color_loss_type == 'l1': | |
error_term = nn.L1Loss() | |
elif opt.color_loss_type == 'mse': | |
error_term = nn.MSELoss() | |
super(ResBlkPIFuNet, self).__init__( | |
projection_mode=projection_mode, | |
error_term=error_term) | |
self.name = 'respifu' | |
self.opt = opt | |
norm_type = get_norm_layer(norm_type=opt.norm_color) | |
self.image_filter = ResnetFilter(opt, norm_layer=norm_type) | |
self.surface_classifier = SurfaceClassifier( | |
filter_channels=self.opt.mlp_dim_color, | |
num_views=self.opt.num_views, | |
no_residual=self.opt.no_residual, | |
last_op=nn.Tanh()) | |
self.normalizer = DepthNormalizer(opt) | |
init_net(self) | |
def filter(self, images): | |
''' | |
Filter the input images | |
store all intermediate features. | |
:param images: [B, C, H, W] input images | |
''' | |
self.im_feat = self.image_filter(images) | |
def attach(self, im_feat): | |
self.im_feat = torch.cat([im_feat, self.im_feat], 1) | |
def query(self, points, calibs, transforms=None, labels=None): | |
''' | |
Given 3D points, query the network predictions for each point. | |
Image features should be pre-computed before this call. | |
store all intermediate features. | |
query() function may behave differently during training/testing. | |
:param points: [B, 3, N] world space coordinates of points | |
:param calibs: [B, 3, 4] calibration matrices for each image | |
:param transforms: Optional [B, 2, 3] image space coordinate transforms | |
:param labels: Optional [B, Res, N] gt labeling | |
:return: [B, Res, N] predictions for each point | |
''' | |
if labels is not None: | |
self.labels = labels | |
xyz = self.projection(points, calibs, transforms) | |
xy = xyz[:, :2, :] | |
z = xyz[:, 2:3, :] | |
z_feat = self.normalizer(z) | |
# This is a list of [B, Feat_i, N] features | |
point_local_feat_list = [self.index(self.im_feat, xy), z_feat] | |
# [B, Feat_all, N] | |
point_local_feat = torch.cat(point_local_feat_list, 1) | |
self.preds = self.surface_classifier(point_local_feat) | |
def forward(self, images, im_feat, points, calibs, transforms=None, labels=None): | |
self.filter(images) | |
self.attach(im_feat) | |
self.query(points, calibs, transforms, labels) | |
res = self.get_preds() | |
error = self.get_error() | |
return res, error | |
class ResnetBlock(nn.Module): | |
"""Define a Resnet block""" | |
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias, last=False): | |
"""Initialize the Resnet block | |
A resnet block is a conv block with skip connections | |
We construct a conv block with build_conv_block function, | |
and implement skip connections in <forward> function. | |
Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf | |
""" | |
super(ResnetBlock, self).__init__() | |
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias, last) | |
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias, last=False): | |
"""Construct a convolutional block. | |
Parameters: | |
dim (int) -- the number of channels in the conv layer. | |
padding_type (str) -- the name of padding layer: reflect | replicate | zero | |
norm_layer -- normalization layer | |
use_dropout (bool) -- if use dropout layers. | |
use_bias (bool) -- if the conv layer uses bias or not | |
Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) | |
""" | |
conv_block = [] | |
p = 0 | |
if padding_type == 'reflect': | |
conv_block += [nn.ReflectionPad2d(1)] | |
elif padding_type == 'replicate': | |
conv_block += [nn.ReplicationPad2d(1)] | |
elif padding_type == 'zero': | |
p = 1 | |
else: | |
raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] | |
if use_dropout: | |
conv_block += [nn.Dropout(0.5)] | |
p = 0 | |
if padding_type == 'reflect': | |
conv_block += [nn.ReflectionPad2d(1)] | |
elif padding_type == 'replicate': | |
conv_block += [nn.ReplicationPad2d(1)] | |
elif padding_type == 'zero': | |
p = 1 | |
else: | |
raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
if last: | |
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias)] | |
else: | |
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] | |
return nn.Sequential(*conv_block) | |
def forward(self, x): | |
"""Forward function (with skip connections)""" | |
out = x + self.conv_block(x) # add skip connections | |
return out | |
class ResnetFilter(nn.Module): | |
"""Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. | |
We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) | |
""" | |
def __init__(self, opt, input_nc=3, output_nc=256, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, | |
n_blocks=6, padding_type='reflect'): | |
"""Construct a Resnet-based generator | |
Parameters: | |
input_nc (int) -- the number of channels in input images | |
output_nc (int) -- the number of channels in output images | |
ngf (int) -- the number of filters in the last conv layer | |
norm_layer -- normalization layer | |
use_dropout (bool) -- if use dropout layers | |
n_blocks (int) -- the number of ResNet blocks | |
padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero | |
""" | |
assert (n_blocks >= 0) | |
super(ResnetFilter, self).__init__() | |
if type(norm_layer) == functools.partial: | |
use_bias = norm_layer.func == nn.InstanceNorm2d | |
else: | |
use_bias = norm_layer == nn.InstanceNorm2d | |
model = [nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), | |
norm_layer(ngf), | |
nn.ReLU(True)] | |
n_downsampling = 2 | |
for i in range(n_downsampling): # add downsampling layers | |
mult = 2 ** i | |
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), | |
norm_layer(ngf * mult * 2), | |
nn.ReLU(True)] | |
mult = 2 ** n_downsampling | |
for i in range(n_blocks): # add ResNet blocks | |
if i == n_blocks - 1: | |
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, | |
use_dropout=use_dropout, use_bias=use_bias, last=True)] | |
else: | |
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, | |
use_dropout=use_dropout, use_bias=use_bias)] | |
if opt.use_tanh: | |
model += [nn.Tanh()] | |
self.model = nn.Sequential(*model) | |
def forward(self, input): | |
"""Standard forward""" | |
return self.model(input) | |