Spaces:
Building
on
A10G
Building
on
A10G
import numpy as np | |
from .enums import ResizeMode | |
import cv2 | |
import torch | |
import os | |
from urllib.parse import urlparse | |
from typing import Optional | |
def rgba2rgbfp32(x): | |
rgb = x[..., :3].astype(np.float32) / 255.0 | |
a = x[..., 3:4].astype(np.float32) / 255.0 | |
return 0.5 + (rgb - 0.5) * a | |
def to255unit8(x): | |
return (x * 255.0).clip(0, 255).astype(np.uint8) | |
def safe_numpy(x): | |
# A very safe method to make sure that Apple/Mac works | |
y = x | |
# below is very boring but do not change these. If you change these Apple or Mac may fail. | |
y = y.copy() | |
y = np.ascontiguousarray(y) | |
y = y.copy() | |
return y | |
def high_quality_resize(x, size): | |
if x.shape[0] != size[1] or x.shape[1] != size[0]: | |
if (size[0] * size[1]) < (x.shape[0] * x.shape[1]): | |
interpolation = cv2.INTER_AREA | |
else: | |
interpolation = cv2.INTER_LANCZOS4 | |
y = cv2.resize(x, size, interpolation=interpolation) | |
else: | |
y = x | |
return y | |
def crop_and_resize_image(detected_map, resize_mode, h, w): | |
if resize_mode == ResizeMode.RESIZE: | |
detected_map = high_quality_resize(detected_map, (w, h)) | |
detected_map = safe_numpy(detected_map) | |
return detected_map | |
old_h, old_w, _ = detected_map.shape | |
old_w = float(old_w) | |
old_h = float(old_h) | |
k0 = float(h) / old_h | |
k1 = float(w) / old_w | |
def safeint(x): | |
return int(np.round(x)) | |
if resize_mode == ResizeMode.RESIZE_AND_FILL: | |
k = min(k0, k1) | |
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0) | |
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype) | |
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1]) | |
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k))) | |
new_h, new_w, _ = detected_map.shape | |
pad_h = max(0, (h - new_h) // 2) | |
pad_w = max(0, (w - new_w) // 2) | |
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map | |
detected_map = high_quality_background | |
detected_map = safe_numpy(detected_map) | |
return detected_map | |
else: | |
k = max(k0, k1) | |
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k))) | |
new_h, new_w, _ = detected_map.shape | |
pad_h = max(0, (new_h - h) // 2) | |
pad_w = max(0, (new_w - w) // 2) | |
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w] | |
detected_map = safe_numpy(detected_map) | |
return detected_map | |
def pytorch_to_numpy(x): | |
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] | |
def numpy_to_pytorch(x): | |
y = x.astype(np.float32) / 255.0 | |
y = y[None] | |
y = np.ascontiguousarray(y.copy()) | |
y = torch.from_numpy(y).float() | |
return y | |
def load_file_from_url( | |
url: str, | |
*, | |
model_dir: str, | |
progress: bool = True, | |
file_name: Optional[str] = None, | |
) -> str: | |
"""Download a file from `url` into `model_dir`, using the file present if possible. | |
Returns the path to the downloaded file. | |
""" | |
os.makedirs(model_dir, exist_ok=True) | |
if not file_name: | |
parts = urlparse(url) | |
file_name = os.path.basename(parts.path) | |
cached_file = os.path.abspath(os.path.join(model_dir, file_name)) | |
if not os.path.exists(cached_file): | |
print(f'Downloading: "{url}" to {cached_file}\n') | |
from torch.hub import download_url_to_file | |
download_url_to_file(url, cached_file, progress=progress) | |
return cached_file | |
def to_lora_patch_dict(state_dict: dict) -> dict: | |
""" Convert raw lora state_dict to patch_dict that can be applied on | |
modelpatcher.""" | |
patch_dict = {} | |
for k, w in state_dict.items(): | |
model_key, patch_type, weight_index = k.split('::') | |
if model_key not in patch_dict: | |
patch_dict[model_key] = {} | |
if patch_type not in patch_dict[model_key]: | |
patch_dict[model_key][patch_type] = [None] * 16 | |
patch_dict[model_key][patch_type][int(weight_index)] = w | |
patch_flat = {} | |
for model_key, v in patch_dict.items(): | |
for patch_type, weight_list in v.items(): | |
patch_flat[model_key] = (patch_type, weight_list) | |
return patch_flat | |