Spaces:
Building
on
A10G
Building
on
A10G
import torch.nn as nn | |
import torch | |
import cv2 | |
import numpy as np | |
from tqdm import tqdm | |
from typing import Optional, Tuple | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block | |
def check_diffusers_version(): | |
import diffusers | |
from packaging.version import parse | |
assert parse(diffusers.__version__) >= parse( | |
"0.25.0" | |
), "diffusers>=0.25.0 requirement not satisfied. Please install correct diffusers version." | |
check_diffusers_version() | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class LatentTransparencyOffsetEncoder(torch.nn.Module): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.blocks = torch.nn.Sequential( | |
torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(), | |
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(), | |
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), | |
nn.SiLU(), | |
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), | |
nn.SiLU(), | |
zero_module(torch.nn.Conv2d(256, 4, kernel_size=3, padding=1, stride=1)), | |
) | |
def __call__(self, x): | |
return self.blocks(x) | |
# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3 | |
class UNet1024(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ( | |
"DownBlock2D", | |
"DownBlock2D", | |
"DownBlock2D", | |
"DownBlock2D", | |
"AttnDownBlock2D", | |
"AttnDownBlock2D", | |
"AttnDownBlock2D", | |
), | |
up_block_types: Tuple[str] = ( | |
"AttnUpBlock2D", | |
"AttnUpBlock2D", | |
"AttnUpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
), | |
block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512), | |
layers_per_block: int = 2, | |
mid_block_scale_factor: float = 1, | |
downsample_padding: int = 1, | |
downsample_type: str = "conv", | |
upsample_type: str = "conv", | |
dropout: float = 0.0, | |
act_fn: str = "silu", | |
attention_head_dim: Optional[int] = 8, | |
norm_num_groups: int = 4, | |
norm_eps: float = 1e-5, | |
): | |
super().__init__() | |
# input | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1) | |
) | |
self.latent_conv_in = zero_module( | |
nn.Conv2d(4, block_out_channels[2], kernel_size=1) | |
) | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=None, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=( | |
attention_head_dim | |
if attention_head_dim is not None | |
else output_channel | |
), | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift="default", | |
downsample_type=downsample_type, | |
dropout=dropout, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
temb_channels=None, | |
dropout=dropout, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift="default", | |
attention_head_dim=( | |
attention_head_dim | |
if attention_head_dim is not None | |
else block_out_channels[-1] | |
), | |
resnet_groups=norm_num_groups, | |
attn_groups=None, | |
add_attention=True, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[ | |
min(i + 1, len(block_out_channels) - 1) | |
] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=None, | |
add_upsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=( | |
attention_head_dim | |
if attention_head_dim is not None | |
else output_channel | |
), | |
resnet_time_scale_shift="default", | |
upsample_type=upsample_type, | |
dropout=dropout, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], out_channels, kernel_size=3, padding=1 | |
) | |
def forward(self, x, latent): | |
sample_latent = self.latent_conv_in(latent) | |
sample = self.conv_in(x) | |
emb = None | |
down_block_res_samples = (sample,) | |
for i, downsample_block in enumerate(self.down_blocks): | |
if i == 3: | |
sample = sample + sample_latent | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
sample = self.mid_block(sample, emb) | |
for upsample_block in self.up_blocks: | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[ | |
: -len(upsample_block.resnets) | |
] | |
sample = upsample_block(sample, res_samples, emb) | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
def checkerboard(shape): | |
return np.indices(shape).sum(axis=0) % 2 | |
def fill_checkerboard_bg(y: torch.Tensor) -> torch.Tensor: | |
alpha = y[..., :1] | |
fg = y[..., 1:] | |
B, H, W, C = fg.shape | |
cb = checkerboard(shape=(H // 64, W // 64)) | |
cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST) | |
cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None] | |
cb = torch.from_numpy(cb).to(fg) | |
vis = fg * alpha + cb * (1 - alpha) | |
return vis | |
class TransparentVAEDecoder: | |
def __init__(self, sd, device, dtype): | |
self.load_device = device | |
self.dtype = dtype | |
model = UNet1024(in_channels=3, out_channels=4) | |
model.load_state_dict(sd, strict=True) | |
model.to(self.load_device, dtype=self.dtype) | |
model.eval() | |
self.model = model | |
def estimate_single_pass(self, pixel, latent): | |
y = self.model(pixel, latent) | |
return y | |
def estimate_augmented(self, pixel, latent): | |
args = [ | |
[False, 0], | |
[False, 1], | |
[False, 2], | |
[False, 3], | |
[True, 0], | |
[True, 1], | |
[True, 2], | |
[True, 3], | |
] | |
result = [] | |
for flip, rok in tqdm(args): | |
feed_pixel = pixel.clone() | |
feed_latent = latent.clone() | |
if flip: | |
feed_pixel = torch.flip(feed_pixel, dims=(3,)) | |
feed_latent = torch.flip(feed_latent, dims=(3,)) | |
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3)) | |
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3)) | |
eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1) | |
eps = torch.rot90(eps, k=-rok, dims=(2, 3)) | |
if flip: | |
eps = torch.flip(eps, dims=(3,)) | |
result += [eps] | |
result = torch.stack(result, dim=0) | |
median = torch.median(result, dim=0).values | |
return median | |
def decode_pixel( | |
self, pixel: torch.TensorType, latent: torch.TensorType | |
) -> torch.TensorType: | |
# pixel.shape = [B, C=3, H, W] | |
assert pixel.shape[1] == 3 | |
pixel_device = pixel.device | |
pixel_dtype = pixel.dtype | |
pixel = pixel.to(device=self.load_device, dtype=self.dtype) | |
latent = latent.to(device=self.load_device, dtype=self.dtype) | |
# y.shape = [B, C=4, H, W] | |
y = self.estimate_augmented(pixel, latent) | |
y = y.clip(0, 1) | |
assert y.shape[1] == 4 | |
# Restore image to original device of input image. | |
return y.to(pixel_device, dtype=pixel_dtype) | |