radames's picture
first
eb9ca51
raw
history blame
10.7 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import block as B
class Get_gradient_nopadding(nn.Module):
def __init__(self):
super(Get_gradient_nopadding, self).__init__()
kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]]
kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]]
kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0)
kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0)
self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) # type: ignore
self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) # type: ignore
def forward(self, x):
x_list = []
for i in range(x.shape[1]):
x_i = x[:, i]
x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1)
x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1)
x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6)
x_list.append(x_i)
x = torch.cat(x_list, dim=1)
return x
class SPSRNet(nn.Module):
def __init__(
self,
state_dict,
norm=None,
act: str = "leakyrelu",
upsampler: str = "upconv",
mode: B.ConvMode = "CNA",
):
super(SPSRNet, self).__init__()
self.model_arch = "SPSR"
self.sub_type = "SR"
self.state = state_dict
self.norm = norm
self.act = act
self.upsampler = upsampler
self.mode = mode
self.num_blocks = self.get_num_blocks()
self.in_nc: int = self.state["model.0.weight"].shape[1]
self.out_nc: int = self.state["f_HR_conv1.0.bias"].shape[0]
self.scale = self.get_scale(4)
self.num_filters: int = self.state["model.0.weight"].shape[0]
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
n_upscale = int(math.log(self.scale, 2))
if self.scale == 3:
n_upscale = 1
fea_conv = B.conv_block(
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
)
rb_blocks = [
B.RRDB(
self.num_filters,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
for _ in range(self.num_blocks)
]
LR_conv = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=norm,
act_type=None,
mode=mode,
)
if upsampler == "upconv":
upsample_block = B.upconv_block
elif upsampler == "pixelshuffle":
upsample_block = B.pixelshuffle_block
else:
raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
if self.scale == 3:
a_upsampler = upsample_block(
self.num_filters, self.num_filters, 3, act_type=act
)
else:
a_upsampler = [
upsample_block(self.num_filters, self.num_filters, act_type=act)
for _ in range(n_upscale)
]
self.HR_conv0_new = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=act,
)
self.HR_conv1_new = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.model = B.sequential(
fea_conv,
B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)),
*a_upsampler,
self.HR_conv0_new,
)
self.get_g_nopadding = Get_gradient_nopadding()
self.b_fea_conv = B.conv_block(
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
)
self.b_concat_1 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_1 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_concat_2 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_2 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_concat_3 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_3 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_concat_4 = B.conv_block(
2 * self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_block_4 = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.b_LR_conv = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=norm,
act_type=None,
mode=mode,
)
if upsampler == "upconv":
upsample_block = B.upconv_block
elif upsampler == "pixelshuffle":
upsample_block = B.pixelshuffle_block
else:
raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
if self.scale == 3:
b_upsampler = upsample_block(
self.num_filters, self.num_filters, 3, act_type=act
)
else:
b_upsampler = [
upsample_block(self.num_filters, self.num_filters, act_type=act)
for _ in range(n_upscale)
]
b_HR_conv0 = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=act,
)
b_HR_conv1 = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1)
self.conv_w = B.conv_block(
self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None
)
self.f_concat = B.conv_block(
self.num_filters * 2,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
)
self.f_block = B.RRDB(
self.num_filters * 2,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=norm,
act_type=act,
mode="CNA",
)
self.f_HR_conv0 = B.conv_block(
self.num_filters,
self.num_filters,
kernel_size=3,
norm_type=None,
act_type=act,
)
self.f_HR_conv1 = B.conv_block(
self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None
)
self.load_state_dict(self.state, strict=False)
def get_scale(self, min_part: int = 4) -> int:
n = 0
for part in list(self.state):
parts = part.split(".")
if len(parts) == 3:
part_num = int(parts[1])
if part_num > min_part and parts[0] == "model" and parts[2] == "weight":
n += 1
return 2**n
def get_num_blocks(self) -> int:
nb = 0
for part in list(self.state):
parts = part.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
return nb
def forward(self, x):
x_grad = self.get_g_nopadding(x)
x = self.model[0](x)
x, block_list = self.model[1](x)
x_ori = x
for i in range(5):
x = block_list[i](x)
x_fea1 = x
for i in range(5):
x = block_list[i + 5](x)
x_fea2 = x
for i in range(5):
x = block_list[i + 10](x)
x_fea3 = x
for i in range(5):
x = block_list[i + 15](x)
x_fea4 = x
x = block_list[20:](x)
# short cut
x = x_ori + x
x = self.model[2:](x)
x = self.HR_conv1_new(x)
x_b_fea = self.b_fea_conv(x_grad)
x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1)
x_cat_1 = self.b_block_1(x_cat_1)
x_cat_1 = self.b_concat_1(x_cat_1)
x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1)
x_cat_2 = self.b_block_2(x_cat_2)
x_cat_2 = self.b_concat_2(x_cat_2)
x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1)
x_cat_3 = self.b_block_3(x_cat_3)
x_cat_3 = self.b_concat_3(x_cat_3)
x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1)
x_cat_4 = self.b_block_4(x_cat_4)
x_cat_4 = self.b_concat_4(x_cat_4)
x_cat_4 = self.b_LR_conv(x_cat_4)
# short cut
x_cat_4 = x_cat_4 + x_b_fea
x_branch = self.b_module(x_cat_4)
# x_out_branch = self.conv_w(x_branch)
########
x_branch_d = x_branch
x_f_cat = torch.cat([x_branch_d, x], dim=1)
x_f_cat = self.f_block(x_f_cat)
x_out = self.f_concat(x_f_cat)
x_out = self.f_HR_conv0(x_out)
x_out = self.f_HR_conv1(x_out)
#########
# return x_out_branch, x_out, x_grad
return x_out