Spaces:
Building
on
A10G
Building
on
A10G
# pylint: skip-file | |
""" | |
Model adapted from advimman's lama project: https://github.com/advimman/lama | |
""" | |
# Fast Fourier Convolution NeurIPS 2020 | |
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py | |
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import InterpolationMode, rotate | |
class LearnableSpatialTransformWrapper(nn.Module): | |
def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True): | |
super().__init__() | |
self.impl = impl | |
self.angle = torch.rand(1) * angle_init_range | |
if train_angle: | |
self.angle = nn.Parameter(self.angle, requires_grad=True) | |
self.pad_coef = pad_coef | |
def forward(self, x): | |
if torch.is_tensor(x): | |
return self.inverse_transform(self.impl(self.transform(x)), x) | |
elif isinstance(x, tuple): | |
x_trans = tuple(self.transform(elem) for elem in x) | |
y_trans = self.impl(x_trans) | |
return tuple( | |
self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x) | |
) | |
else: | |
raise ValueError(f"Unexpected input type {type(x)}") | |
def transform(self, x): | |
height, width = x.shape[2:] | |
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) | |
x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode="reflect") | |
x_padded_rotated = rotate( | |
x_padded, self.angle.to(x_padded), InterpolationMode.BILINEAR, fill=0 | |
) | |
return x_padded_rotated | |
def inverse_transform(self, y_padded_rotated, orig_x): | |
height, width = orig_x.shape[2:] | |
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) | |
y_padded = rotate( | |
y_padded_rotated, | |
-self.angle.to(y_padded_rotated), | |
InterpolationMode.BILINEAR, | |
fill=0, | |
) | |
y_height, y_width = y_padded.shape[2:] | |
y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w] | |
return y | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=16): | |
super(SELayer, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction, bias=False), | |
nn.ReLU(inplace=True), | |
nn.Linear(channel // reduction, channel, bias=False), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
res = x * y.expand_as(x) | |
return res | |
class FourierUnit(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
groups=1, | |
spatial_scale_factor=None, | |
spatial_scale_mode="bilinear", | |
spectral_pos_encoding=False, | |
use_se=False, | |
se_kwargs=None, | |
ffc3d=False, | |
fft_norm="ortho", | |
): | |
# bn_layer not used | |
super(FourierUnit, self).__init__() | |
self.groups = groups | |
self.conv_layer = torch.nn.Conv2d( | |
in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), | |
out_channels=out_channels * 2, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=self.groups, | |
bias=False, | |
) | |
self.bn = torch.nn.BatchNorm2d(out_channels * 2) | |
self.relu = torch.nn.ReLU(inplace=True) | |
# squeeze and excitation block | |
self.use_se = use_se | |
if use_se: | |
if se_kwargs is None: | |
se_kwargs = {} | |
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) | |
self.spatial_scale_factor = spatial_scale_factor | |
self.spatial_scale_mode = spatial_scale_mode | |
self.spectral_pos_encoding = spectral_pos_encoding | |
self.ffc3d = ffc3d | |
self.fft_norm = fft_norm | |
def forward(self, x): | |
half_check = False | |
if x.type() == "torch.cuda.HalfTensor": | |
# half only works on gpu anyway | |
half_check = True | |
batch = x.shape[0] | |
if self.spatial_scale_factor is not None: | |
orig_size = x.shape[-2:] | |
x = F.interpolate( | |
x, | |
scale_factor=self.spatial_scale_factor, | |
mode=self.spatial_scale_mode, | |
align_corners=False, | |
) | |
# (batch, c, h, w/2+1, 2) | |
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) | |
if half_check == True: | |
ffted = torch.fft.rfftn( | |
x.float(), dim=fft_dim, norm=self.fft_norm | |
) # .type(torch.cuda.HalfTensor) | |
else: | |
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) | |
ffted = torch.stack((ffted.real, ffted.imag), dim=-1) | |
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) | |
ffted = ffted.view( | |
( | |
batch, | |
-1, | |
) | |
+ ffted.size()[3:] | |
) | |
if self.spectral_pos_encoding: | |
height, width = ffted.shape[-2:] | |
coords_vert = ( | |
torch.linspace(0, 1, height)[None, None, :, None] | |
.expand(batch, 1, height, width) | |
.to(ffted) | |
) | |
coords_hor = ( | |
torch.linspace(0, 1, width)[None, None, None, :] | |
.expand(batch, 1, height, width) | |
.to(ffted) | |
) | |
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) | |
if self.use_se: | |
ffted = self.se(ffted) | |
if half_check == True: | |
ffted = self.conv_layer(ffted.half()) # (batch, c*2, h, w/2+1) | |
else: | |
ffted = self.conv_layer( | |
ffted | |
) # .type(torch.cuda.FloatTensor) # (batch, c*2, h, w/2+1) | |
ffted = self.relu(self.bn(ffted)) | |
# forcing to be always float | |
ffted = ffted.float() | |
ffted = ( | |
ffted.view( | |
( | |
batch, | |
-1, | |
2, | |
) | |
+ ffted.size()[2:] | |
) | |
.permute(0, 1, 3, 4, 2) | |
.contiguous() | |
) # (batch,c, t, h, w/2+1, 2) | |
ffted = torch.complex(ffted[..., 0], ffted[..., 1]) | |
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] | |
output = torch.fft.irfftn( | |
ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm | |
) | |
if half_check == True: | |
output = output.half() | |
if self.spatial_scale_factor is not None: | |
output = F.interpolate( | |
output, | |
size=orig_size, | |
mode=self.spatial_scale_mode, | |
align_corners=False, | |
) | |
return output | |
class SpectralTransform(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
stride=1, | |
groups=1, | |
enable_lfu=True, | |
separable_fu=False, | |
**fu_kwargs, | |
): | |
# bn_layer not used | |
super(SpectralTransform, self).__init__() | |
self.enable_lfu = enable_lfu | |
if stride == 2: | |
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) | |
else: | |
self.downsample = nn.Identity() | |
self.stride = stride | |
self.conv1 = nn.Sequential( | |
nn.Conv2d( | |
in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False | |
), | |
nn.BatchNorm2d(out_channels // 2), | |
nn.ReLU(inplace=True), | |
) | |
fu_class = FourierUnit | |
self.fu = fu_class(out_channels // 2, out_channels // 2, groups, **fu_kwargs) | |
if self.enable_lfu: | |
self.lfu = fu_class(out_channels // 2, out_channels // 2, groups) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False | |
) | |
def forward(self, x): | |
x = self.downsample(x) | |
x = self.conv1(x) | |
output = self.fu(x) | |
if self.enable_lfu: | |
_, c, h, _ = x.shape | |
split_no = 2 | |
split_s = h // split_no | |
xs = torch.cat( | |
torch.split(x[:, : c // 4], split_s, dim=-2), dim=1 | |
).contiguous() | |
xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous() | |
xs = self.lfu(xs) | |
xs = xs.repeat(1, 1, split_no, split_no).contiguous() | |
else: | |
xs = 0 | |
output = self.conv2(x + output + xs) | |
return output | |
class FFC(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
ratio_gin, | |
ratio_gout, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=False, | |
enable_lfu=True, | |
padding_type="reflect", | |
gated=False, | |
**spectral_kwargs, | |
): | |
super(FFC, self).__init__() | |
assert stride == 1 or stride == 2, "Stride should be 1 or 2." | |
self.stride = stride | |
in_cg = int(in_channels * ratio_gin) | |
in_cl = in_channels - in_cg | |
out_cg = int(out_channels * ratio_gout) | |
out_cl = out_channels - out_cg | |
# groups_g = 1 if groups == 1 else int(groups * ratio_gout) | |
# groups_l = 1 if groups == 1 else groups - groups_g | |
self.ratio_gin = ratio_gin | |
self.ratio_gout = ratio_gout | |
self.global_in_num = in_cg | |
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d | |
self.convl2l = module( | |
in_cl, | |
out_cl, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
padding_mode=padding_type, | |
) | |
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d | |
self.convl2g = module( | |
in_cl, | |
out_cg, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
padding_mode=padding_type, | |
) | |
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d | |
self.convg2l = module( | |
in_cg, | |
out_cl, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
padding_mode=padding_type, | |
) | |
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform | |
self.convg2g = module( | |
in_cg, | |
out_cg, | |
stride, | |
1 if groups == 1 else groups // 2, | |
enable_lfu, | |
**spectral_kwargs, | |
) | |
self.gated = gated | |
module = ( | |
nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d | |
) | |
self.gate = module(in_channels, 2, 1) | |
def forward(self, x): | |
x_l, x_g = x if type(x) is tuple else (x, 0) | |
out_xl, out_xg = 0, 0 | |
if self.gated: | |
total_input_parts = [x_l] | |
if torch.is_tensor(x_g): | |
total_input_parts.append(x_g) | |
total_input = torch.cat(total_input_parts, dim=1) | |
gates = torch.sigmoid(self.gate(total_input)) | |
g2l_gate, l2g_gate = gates.chunk(2, dim=1) | |
else: | |
g2l_gate, l2g_gate = 1, 1 | |
if self.ratio_gout != 1: | |
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate | |
if self.ratio_gout != 0: | |
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) | |
return out_xl, out_xg | |
class FFC_BN_ACT(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
ratio_gin, | |
ratio_gout, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=False, | |
norm_layer=nn.BatchNorm2d, | |
activation_layer=nn.Identity, | |
padding_type="reflect", | |
enable_lfu=True, | |
**kwargs, | |
): | |
super(FFC_BN_ACT, self).__init__() | |
self.ffc = FFC( | |
in_channels, | |
out_channels, | |
kernel_size, | |
ratio_gin, | |
ratio_gout, | |
stride, | |
padding, | |
dilation, | |
groups, | |
bias, | |
enable_lfu, | |
padding_type=padding_type, | |
**kwargs, | |
) | |
lnorm = nn.Identity if ratio_gout == 1 else norm_layer | |
gnorm = nn.Identity if ratio_gout == 0 else norm_layer | |
global_channels = int(out_channels * ratio_gout) | |
self.bn_l = lnorm(out_channels - global_channels) | |
self.bn_g = gnorm(global_channels) | |
lact = nn.Identity if ratio_gout == 1 else activation_layer | |
gact = nn.Identity if ratio_gout == 0 else activation_layer | |
self.act_l = lact(inplace=True) | |
self.act_g = gact(inplace=True) | |
def forward(self, x): | |
x_l, x_g = self.ffc(x) | |
x_l = self.act_l(self.bn_l(x_l)) | |
x_g = self.act_g(self.bn_g(x_g)) | |
return x_l, x_g | |
class FFCResnetBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
padding_type, | |
norm_layer, | |
activation_layer=nn.ReLU, | |
dilation=1, | |
spatial_transform_kwargs=None, | |
inline=False, | |
**conv_kwargs, | |
): | |
super().__init__() | |
self.conv1 = FFC_BN_ACT( | |
dim, | |
dim, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation, | |
norm_layer=norm_layer, | |
activation_layer=activation_layer, | |
padding_type=padding_type, | |
**conv_kwargs, | |
) | |
self.conv2 = FFC_BN_ACT( | |
dim, | |
dim, | |
kernel_size=3, | |
padding=dilation, | |
dilation=dilation, | |
norm_layer=norm_layer, | |
activation_layer=activation_layer, | |
padding_type=padding_type, | |
**conv_kwargs, | |
) | |
if spatial_transform_kwargs is not None: | |
self.conv1 = LearnableSpatialTransformWrapper( | |
self.conv1, **spatial_transform_kwargs | |
) | |
self.conv2 = LearnableSpatialTransformWrapper( | |
self.conv2, **spatial_transform_kwargs | |
) | |
self.inline = inline | |
def forward(self, x): | |
if self.inline: | |
x_l, x_g = ( | |
x[:, : -self.conv1.ffc.global_in_num], | |
x[:, -self.conv1.ffc.global_in_num :], | |
) | |
else: | |
x_l, x_g = x if type(x) is tuple else (x, 0) | |
id_l, id_g = x_l, x_g | |
x_l, x_g = self.conv1((x_l, x_g)) | |
x_l, x_g = self.conv2((x_l, x_g)) | |
x_l, x_g = id_l + x_l, id_g + x_g | |
out = x_l, x_g | |
if self.inline: | |
out = torch.cat(out, dim=1) | |
return out | |
class ConcatTupleLayer(nn.Module): | |
def forward(self, x): | |
assert isinstance(x, tuple) | |
x_l, x_g = x | |
assert torch.is_tensor(x_l) or torch.is_tensor(x_g) | |
if not torch.is_tensor(x_g): | |
return x_l | |
return torch.cat(x, dim=1) | |
class FFCResNetGenerator(nn.Module): | |
def __init__( | |
self, | |
input_nc, | |
output_nc, | |
ngf=64, | |
n_downsampling=3, | |
n_blocks=18, | |
norm_layer=nn.BatchNorm2d, | |
padding_type="reflect", | |
activation_layer=nn.ReLU, | |
up_norm_layer=nn.BatchNorm2d, | |
up_activation=nn.ReLU(True), | |
init_conv_kwargs={}, | |
downsample_conv_kwargs={}, | |
resnet_conv_kwargs={}, | |
spatial_transform_layers=None, | |
spatial_transform_kwargs={}, | |
max_features=1024, | |
out_ffc=False, | |
out_ffc_kwargs={}, | |
): | |
assert n_blocks >= 0 | |
super().__init__() | |
""" | |
init_conv_kwargs = {'ratio_gin': 0, 'ratio_gout': 0, 'enable_lfu': False} | |
downsample_conv_kwargs = {'ratio_gin': '${generator.init_conv_kwargs.ratio_gout}', 'ratio_gout': '${generator.downsample_conv_kwargs.ratio_gin}', 'enable_lfu': False} | |
resnet_conv_kwargs = {'ratio_gin': 0.75, 'ratio_gout': '${generator.resnet_conv_kwargs.ratio_gin}', 'enable_lfu': False} | |
spatial_transform_kwargs = {} | |
out_ffc_kwargs = {} | |
""" | |
""" | |
print(input_nc, output_nc, ngf, n_downsampling, n_blocks, norm_layer, | |
padding_type, activation_layer, | |
up_norm_layer, up_activation, | |
spatial_transform_layers, | |
add_out_act, max_features, out_ffc, file=sys.stderr) | |
4 3 64 3 18 <class 'torch.nn.modules.batchnorm.BatchNorm2d'> | |
reflect <class 'torch.nn.modules.activation.ReLU'> | |
<class 'torch.nn.modules.batchnorm.BatchNorm2d'> | |
ReLU(inplace=True) | |
None sigmoid 1024 False | |
""" | |
init_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False} | |
downsample_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False} | |
resnet_conv_kwargs = { | |
"ratio_gin": 0.75, | |
"ratio_gout": 0.75, | |
"enable_lfu": False, | |
} | |
spatial_transform_kwargs = {} | |
out_ffc_kwargs = {} | |
model = [ | |
nn.ReflectionPad2d(3), | |
FFC_BN_ACT( | |
input_nc, | |
ngf, | |
kernel_size=7, | |
padding=0, | |
norm_layer=norm_layer, | |
activation_layer=activation_layer, | |
**init_conv_kwargs, | |
), | |
] | |
### downsample | |
for i in range(n_downsampling): | |
mult = 2**i | |
if i == n_downsampling - 1: | |
cur_conv_kwargs = dict(downsample_conv_kwargs) | |
cur_conv_kwargs["ratio_gout"] = resnet_conv_kwargs.get("ratio_gin", 0) | |
else: | |
cur_conv_kwargs = downsample_conv_kwargs | |
model += [ | |
FFC_BN_ACT( | |
min(max_features, ngf * mult), | |
min(max_features, ngf * mult * 2), | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_layer=norm_layer, | |
activation_layer=activation_layer, | |
**cur_conv_kwargs, | |
) | |
] | |
mult = 2**n_downsampling | |
feats_num_bottleneck = min(max_features, ngf * mult) | |
### resnet blocks | |
for i in range(n_blocks): | |
cur_resblock = FFCResnetBlock( | |
feats_num_bottleneck, | |
padding_type=padding_type, | |
activation_layer=activation_layer, | |
norm_layer=norm_layer, | |
**resnet_conv_kwargs, | |
) | |
if spatial_transform_layers is not None and i in spatial_transform_layers: | |
cur_resblock = LearnableSpatialTransformWrapper( | |
cur_resblock, **spatial_transform_kwargs | |
) | |
model += [cur_resblock] | |
model += [ConcatTupleLayer()] | |
### upsample | |
for i in range(n_downsampling): | |
mult = 2 ** (n_downsampling - i) | |
model += [ | |
nn.ConvTranspose2d( | |
min(max_features, ngf * mult), | |
min(max_features, int(ngf * mult / 2)), | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
), | |
up_norm_layer(min(max_features, int(ngf * mult / 2))), | |
up_activation, | |
] | |
if out_ffc: | |
model += [ | |
FFCResnetBlock( | |
ngf, | |
padding_type=padding_type, | |
activation_layer=activation_layer, | |
norm_layer=norm_layer, | |
inline=True, | |
**out_ffc_kwargs, | |
) | |
] | |
model += [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), | |
] | |
model.append(nn.Sigmoid()) | |
self.model = nn.Sequential(*model) | |
def forward(self, image, mask): | |
return self.model(torch.cat([image, mask], dim=1)) | |
class LaMa(nn.Module): | |
def __init__(self, state_dict) -> None: | |
super(LaMa, self).__init__() | |
self.model_arch = "LaMa" | |
self.sub_type = "Inpaint" | |
self.in_nc = 4 | |
self.out_nc = 3 | |
self.scale = 1 | |
self.min_size = None | |
self.pad_mod = 8 | |
self.pad_to_square = False | |
self.model = FFCResNetGenerator(self.in_nc, self.out_nc) | |
self.state = { | |
k.replace("generator.model", "model.model"): v | |
for k, v in state_dict.items() | |
} | |
self.supports_fp16 = False | |
self.support_bf16 = True | |
self.load_state_dict(self.state, strict=False) | |
def forward(self, img, mask): | |
masked_img = img * (1 - mask) | |
inpainted_mask = mask * self.model.forward(masked_img, mask) | |
result = inpainted_mask + (1 - mask) * img | |
return result | |