Spaces:
Building
on
A10G
Building
on
A10G
import math | |
from scipy import integrate | |
import torch | |
from torch import nn | |
import torchsde | |
from tqdm.auto import trange, tqdm | |
from . import utils | |
def append_zero(x): | |
return torch.cat([x, x.new_zeros([1])]) | |
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'): | |
"""Constructs the noise schedule of Karras et al. (2022).""" | |
ramp = torch.linspace(0, 1, n, device=device) | |
min_inv_rho = sigma_min ** (1 / rho) | |
max_inv_rho = sigma_max ** (1 / rho) | |
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
return append_zero(sigmas).to(device) | |
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'): | |
"""Constructs an exponential noise schedule.""" | |
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp() | |
return append_zero(sigmas) | |
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'): | |
"""Constructs an polynomial in log sigma noise schedule.""" | |
ramp = torch.linspace(1, 0, n, device=device) ** rho | |
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min)) | |
return append_zero(sigmas) | |
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'): | |
"""Constructs a continuous VP noise schedule.""" | |
t = torch.linspace(1, eps_s, n, device=device) | |
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1) | |
return append_zero(sigmas) | |
def to_d(x, sigma, denoised): | |
"""Converts a denoiser output to a Karras ODE derivative.""" | |
return (x - denoised) / utils.append_dims(sigma, x.ndim) | |
def get_ancestral_step(sigma_from, sigma_to, eta=1.): | |
"""Calculates the noise level (sigma_down) to step down to and the amount | |
of noise to add (sigma_up) when doing an ancestral sampling step.""" | |
if not eta: | |
return sigma_to, 0. | |
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) | |
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 | |
return sigma_down, sigma_up | |
def default_noise_sampler(x): | |
return lambda sigma, sigma_next: torch.randn_like(x) | |
class BatchedBrownianTree: | |
"""A wrapper around torchsde.BrownianTree that enables batches of entropy.""" | |
def __init__(self, x, t0, t1, seed=None, **kwargs): | |
self.cpu_tree = True | |
if "cpu" in kwargs: | |
self.cpu_tree = kwargs.pop("cpu") | |
t0, t1, self.sign = self.sort(t0, t1) | |
w0 = kwargs.get('w0', torch.zeros_like(x)) | |
if seed is None: | |
seed = torch.randint(0, 2 ** 63 - 1, []).item() | |
self.batched = True | |
try: | |
assert len(seed) == x.shape[0] | |
w0 = w0[0] | |
except TypeError: | |
seed = [seed] | |
self.batched = False | |
if self.cpu_tree: | |
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed] | |
else: | |
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed] | |
def sort(a, b): | |
return (a, b, 1) if a < b else (b, a, -1) | |
def __call__(self, t0, t1): | |
t0, t1, sign = self.sort(t0, t1) | |
if self.cpu_tree: | |
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign) | |
else: | |
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign) | |
return w if self.batched else w[0] | |
class BrownianTreeNoiseSampler: | |
"""A noise sampler backed by a torchsde.BrownianTree. | |
Args: | |
x (Tensor): The tensor whose shape, device and dtype to use to generate | |
random samples. | |
sigma_min (float): The low end of the valid interval. | |
sigma_max (float): The high end of the valid interval. | |
seed (int or List[int]): The random seed. If a list of seeds is | |
supplied instead of a single integer, then the noise sampler will | |
use one BrownianTree per batch item, each with its own seed. | |
transform (callable): A function that maps sigma to the sampler's | |
internal timestep. | |
""" | |
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): | |
self.transform = transform | |
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max)) | |
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) | |
def __call__(self, sigma, sigma_next): | |
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next)) | |
return self.tree(t0, t1) / (t1 - t0).abs().sqrt() | |
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): | |
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022).""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. | |
sigma_hat = sigmas[i] * (gamma + 1) | |
if gamma > 0: | |
eps = torch.randn_like(x) * s_noise | |
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 | |
denoised = model(x, sigma_hat * s_in, **extra_args) | |
d = to_d(x, sigma_hat, denoised) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | |
dt = sigmas[i + 1] - sigma_hat | |
# Euler method | |
x = x + d * dt | |
return x | |
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): | |
"""Ancestral sampling with Euler method steps.""" | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
d = to_d(x, sigmas[i], denoised) | |
# Euler method | |
dt = sigma_down - sigmas[i] | |
x = x + d * dt | |
if sigmas[i + 1] > 0: | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up | |
return x | |
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): | |
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022).""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. | |
sigma_hat = sigmas[i] * (gamma + 1) | |
if gamma > 0: | |
eps = torch.randn_like(x) * s_noise | |
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 | |
denoised = model(x, sigma_hat * s_in, **extra_args) | |
d = to_d(x, sigma_hat, denoised) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | |
dt = sigmas[i + 1] - sigma_hat | |
if sigmas[i + 1] == 0: | |
# Euler method | |
x = x + d * dt | |
else: | |
# Heun's method | |
x_2 = x + d * dt | |
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) | |
d_2 = to_d(x_2, sigmas[i + 1], denoised_2) | |
d_prime = (d + d_2) / 2 | |
x = x + d_prime * dt | |
return x | |
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): | |
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022).""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. | |
sigma_hat = sigmas[i] * (gamma + 1) | |
if gamma > 0: | |
eps = torch.randn_like(x) * s_noise | |
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 | |
denoised = model(x, sigma_hat * s_in, **extra_args) | |
d = to_d(x, sigma_hat, denoised) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | |
if sigmas[i + 1] == 0: | |
# Euler method | |
dt = sigmas[i + 1] - sigma_hat | |
x = x + d * dt | |
else: | |
# DPM-Solver-2 | |
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp() | |
dt_1 = sigma_mid - sigma_hat | |
dt_2 = sigmas[i + 1] - sigma_hat | |
x_2 = x + d * dt_1 | |
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) | |
d_2 = to_d(x_2, sigma_mid, denoised_2) | |
x = x + d_2 * dt_2 | |
return x | |
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): | |
"""Ancestral sampling with DPM-Solver second-order steps.""" | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
d = to_d(x, sigmas[i], denoised) | |
if sigma_down == 0: | |
# Euler method | |
dt = sigma_down - sigmas[i] | |
x = x + d * dt | |
else: | |
# DPM-Solver-2 | |
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp() | |
dt_1 = sigma_mid - sigmas[i] | |
dt_2 = sigma_down - sigmas[i] | |
x_2 = x + d * dt_1 | |
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args) | |
d_2 = to_d(x_2, sigma_mid, denoised_2) | |
x = x + d_2 * dt_2 | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up | |
return x | |
def linear_multistep_coeff(order, t, i, j): | |
if order - 1 > i: | |
raise ValueError(f'Order {order} too high for step {i}') | |
def fn(tau): | |
prod = 1. | |
for k in range(order): | |
if j == k: | |
continue | |
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) | |
return prod | |
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0] | |
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4): | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
sigmas_cpu = sigmas.detach().cpu().numpy() | |
ds = [] | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
d = to_d(x, sigmas[i], denoised) | |
ds.append(d) | |
if len(ds) > order: | |
ds.pop(0) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
cur_order = min(i + 1, order) | |
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)] | |
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) | |
return x | |
class PIDStepSizeController: | |
"""A PID controller for ODE adaptive step size control.""" | |
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8): | |
self.h = h | |
self.b1 = (pcoeff + icoeff + dcoeff) / order | |
self.b2 = -(pcoeff + 2 * dcoeff) / order | |
self.b3 = dcoeff / order | |
self.accept_safety = accept_safety | |
self.eps = eps | |
self.errs = [] | |
def limiter(self, x): | |
return 1 + math.atan(x - 1) | |
def propose_step(self, error): | |
inv_error = 1 / (float(error) + self.eps) | |
if not self.errs: | |
self.errs = [inv_error, inv_error, inv_error] | |
self.errs[0] = inv_error | |
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3 | |
factor = self.limiter(factor) | |
accept = factor >= self.accept_safety | |
if accept: | |
self.errs[2] = self.errs[1] | |
self.errs[1] = self.errs[0] | |
self.h *= factor | |
return accept | |
class DPMSolver(nn.Module): | |
"""DPM-Solver. See https://arxiv.org/abs/2206.00927.""" | |
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None): | |
super().__init__() | |
self.model = model | |
self.extra_args = {} if extra_args is None else extra_args | |
self.eps_callback = eps_callback | |
self.info_callback = info_callback | |
def t(self, sigma): | |
return -sigma.log() | |
def sigma(self, t): | |
return t.neg().exp() | |
def eps(self, eps_cache, key, x, t, *args, **kwargs): | |
if key in eps_cache: | |
return eps_cache[key], eps_cache | |
sigma = self.sigma(t) * x.new_ones([x.shape[0]]) | |
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t) | |
if self.eps_callback is not None: | |
self.eps_callback() | |
return eps, {key: eps, **eps_cache} | |
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None): | |
eps_cache = {} if eps_cache is None else eps_cache | |
h = t_next - t | |
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) | |
x_1 = x - self.sigma(t_next) * h.expm1() * eps | |
return x_1, eps_cache | |
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None): | |
eps_cache = {} if eps_cache is None else eps_cache | |
h = t_next - t | |
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) | |
s1 = t + r1 * h | |
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps | |
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) | |
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps) | |
return x_2, eps_cache | |
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None): | |
eps_cache = {} if eps_cache is None else eps_cache | |
h = t_next - t | |
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) | |
s1 = t + r1 * h | |
s2 = t + r2 * h | |
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps | |
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1) | |
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps) | |
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2) | |
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps) | |
return x_3, eps_cache | |
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None): | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
if not t_end > t_start and eta: | |
raise ValueError('eta must be 0 for reverse sampling') | |
m = math.floor(nfe / 3) + 1 | |
ts = torch.linspace(t_start, t_end, m + 1, device=x.device) | |
if nfe % 3 == 0: | |
orders = [3] * (m - 2) + [2, 1] | |
else: | |
orders = [3] * (m - 1) + [nfe % 3] | |
for i in range(len(orders)): | |
eps_cache = {} | |
t, t_next = ts[i], ts[i + 1] | |
if eta: | |
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta) | |
t_next_ = torch.minimum(t_end, self.t(sd)) | |
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5 | |
else: | |
t_next_, su = t_next, 0. | |
eps, eps_cache = self.eps(eps_cache, 'eps', x, t) | |
denoised = x - self.sigma(t) * eps | |
if self.info_callback is not None: | |
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised}) | |
if orders[i] == 1: | |
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache) | |
elif orders[i] == 2: | |
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache) | |
else: | |
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache) | |
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next)) | |
return x | |
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None): | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
if order not in {2, 3}: | |
raise ValueError('order should be 2 or 3') | |
forward = t_end > t_start | |
if not forward and eta: | |
raise ValueError('eta must be 0 for reverse sampling') | |
h_init = abs(h_init) * (1 if forward else -1) | |
atol = torch.tensor(atol) | |
rtol = torch.tensor(rtol) | |
s = t_start | |
x_prev = x | |
accept = True | |
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety) | |
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0} | |
while s < t_end - 1e-5 if forward else s > t_end + 1e-5: | |
eps_cache = {} | |
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h) | |
if eta: | |
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta) | |
t_ = torch.minimum(t_end, self.t(sd)) | |
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5 | |
else: | |
t_, su = t, 0. | |
eps, eps_cache = self.eps(eps_cache, 'eps', x, s) | |
denoised = x - self.sigma(s) * eps | |
if order == 2: | |
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache) | |
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache) | |
else: | |
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache) | |
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache) | |
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs())) | |
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5 | |
accept = pid.propose_step(error) | |
if accept: | |
x_prev = x_low | |
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t)) | |
s = t | |
info['n_accept'] += 1 | |
else: | |
info['n_reject'] += 1 | |
info['nfe'] += order | |
info['steps'] += 1 | |
if self.info_callback is not None: | |
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info}) | |
return x, info | |
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None): | |
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927.""" | |
if sigma_min <= 0 or sigma_max <= 0: | |
raise ValueError('sigma_min and sigma_max must not be 0') | |
with tqdm(total=n, disable=disable) as pbar: | |
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) | |
if callback is not None: | |
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) | |
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler) | |
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False): | |
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927.""" | |
if sigma_min <= 0 or sigma_max <= 0: | |
raise ValueError('sigma_min and sigma_max must not be 0') | |
with tqdm(disable=disable) as pbar: | |
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update) | |
if callback is not None: | |
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info}) | |
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler) | |
if return_info: | |
return x, info | |
return x | |
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): | |
"""Ancestral sampling with DPM-Solver++(2S) second-order steps.""" | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
s_in = x.new_ones([x.shape[0]]) | |
sigma_fn = lambda t: t.neg().exp() | |
t_fn = lambda sigma: sigma.log().neg() | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
if sigma_down == 0: | |
# Euler method | |
d = to_d(x, sigmas[i], denoised) | |
dt = sigma_down - sigmas[i] | |
x = x + d * dt | |
else: | |
# DPM-Solver++(2S) | |
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down) | |
r = 1 / 2 | |
h = t_next - t | |
s = t + r * h | |
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised | |
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) | |
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2 | |
# Noise addition | |
if sigmas[i + 1] > 0: | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up | |
return x | |
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): | |
"""DPM-Solver++ (stochastic).""" | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
seed = extra_args.get("seed", None) | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
sigma_fn = lambda t: t.neg().exp() | |
t_fn = lambda sigma: sigma.log().neg() | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
if sigmas[i + 1] == 0: | |
# Euler method | |
d = to_d(x, sigmas[i], denoised) | |
dt = sigmas[i + 1] - sigmas[i] | |
x = x + d * dt | |
else: | |
# DPM-Solver++ | |
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) | |
h = t_next - t | |
s = t + h * r | |
fac = 1 / (2 * r) | |
# Step 1 | |
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta) | |
s_ = t_fn(sd) | |
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised | |
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su | |
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args) | |
# Step 2 | |
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta) | |
t_next_ = t_fn(sd) | |
denoised_d = (1 - fac) * denoised + fac * denoised_2 | |
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d | |
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su | |
return x | |
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): | |
"""DPM-Solver++(2M).""" | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
sigma_fn = lambda t: t.neg().exp() | |
t_fn = lambda sigma: sigma.log().neg() | |
old_denoised = None | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) | |
h = t_next - t | |
if old_denoised is None or sigmas[i + 1] == 0: | |
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised | |
else: | |
h_last = t - t_fn(sigmas[i - 1]) | |
r = h_last / h | |
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised | |
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d | |
old_denoised = denoised | |
return x | |
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): | |
"""DPM-Solver++(2M) SDE.""" | |
if solver_type not in {'heun', 'midpoint'}: | |
raise ValueError('solver_type must be \'heun\' or \'midpoint\'') | |
seed = extra_args.get("seed", None) | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
old_denoised = None | |
h_last = None | |
h = None | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
if sigmas[i + 1] == 0: | |
# Denoising step | |
x = denoised | |
else: | |
# DPM-Solver++(2M) SDE | |
t, s = -sigmas[i].log(), -sigmas[i + 1].log() | |
h = s - t | |
eta_h = eta * h | |
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised | |
if old_denoised is not None: | |
r = h_last / h | |
if solver_type == 'heun': | |
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised) | |
elif solver_type == 'midpoint': | |
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised) | |
if eta: | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise | |
old_denoised = denoised | |
h_last = h | |
return x | |
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): | |
"""DPM-Solver++(3M) SDE.""" | |
seed = extra_args.get("seed", None) | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
denoised_1, denoised_2 = None, None | |
h, h_1, h_2 = None, None, None | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
if sigmas[i + 1] == 0: | |
# Denoising step | |
x = denoised | |
else: | |
t, s = -sigmas[i].log(), -sigmas[i + 1].log() | |
h = s - t | |
h_eta = h * (eta + 1) | |
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised | |
if h_2 is not None: | |
r0 = h_1 / h | |
r1 = h_2 / h | |
d1_0 = (denoised - denoised_1) / r0 | |
d1_1 = (denoised_1 - denoised_2) / r1 | |
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1) | |
d2 = (d1_0 - d1_1) / (r0 + r1) | |
phi_2 = h_eta.neg().expm1() / h_eta + 1 | |
phi_3 = phi_2 / h_eta - 0.5 | |
x = x + phi_2 * d1 - phi_3 * d2 | |
elif h_1 is not None: | |
r = h_1 / h | |
d = (denoised - denoised_1) / r | |
phi_2 = h_eta.neg().expm1() / h_eta + 1 | |
x = x + phi_2 * d | |
if eta: | |
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise | |
denoised_1, denoised_2 = denoised, denoised_1 | |
h_1, h_2 = h, h_1 | |
return x | |
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler | |
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler) | |
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'): | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler | |
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type) | |
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2): | |
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() | |
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler | |
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) | |
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler): | |
alpha_cumprod = 1 / ((sigma * sigma) + 1) | |
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1) | |
alpha = (alpha_cumprod / alpha_cumprod_prev) | |
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt()) | |
if sigma_prev > 0: | |
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev) | |
return mu | |
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler) | |
if sigmas[i + 1] != 0: | |
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0) | |
return x | |
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): | |
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step) | |
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): | |
extra_args = {} if extra_args is None else extra_args | |
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler | |
s_in = x.new_ones([x.shape[0]]) | |
for i in trange(len(sigmas) - 1, disable=disable): | |
denoised = model(x, sigmas[i] * s_in, **extra_args) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
x = denoised | |
if sigmas[i + 1] > 0: | |
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1]) | |
return x | |
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.): | |
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/ | |
extra_args = {} if extra_args is None else extra_args | |
s_in = x.new_ones([x.shape[0]]) | |
s_end = sigmas[-1] | |
for i in trange(len(sigmas) - 1, disable=disable): | |
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0. | |
eps = torch.randn_like(x) * s_noise | |
sigma_hat = sigmas[i] * (gamma + 1) | |
if gamma > 0: | |
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5 | |
denoised = model(x, sigma_hat * s_in, **extra_args) | |
d = to_d(x, sigma_hat, denoised) | |
if callback is not None: | |
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | |
dt = sigmas[i + 1] - sigma_hat | |
if sigmas[i + 1] == s_end: | |
# Euler method | |
x = x + d * dt | |
elif sigmas[i + 2] == s_end: | |
# Heun's method | |
x_2 = x + d * dt | |
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) | |
d_2 = to_d(x_2, sigmas[i + 1], denoised_2) | |
w = 2 * sigmas[0] | |
w2 = sigmas[i+1]/w | |
w1 = 1 - w2 | |
d_prime = d * w1 + d_2 * w2 | |
x = x + d_prime * dt | |
else: | |
# Heun++ | |
x_2 = x + d * dt | |
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args) | |
d_2 = to_d(x_2, sigmas[i + 1], denoised_2) | |
dt_2 = sigmas[i + 2] - sigmas[i + 1] | |
x_3 = x_2 + d_2 * dt_2 | |
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args) | |
d_3 = to_d(x_3, sigmas[i + 2], denoised_3) | |
w = 3 * sigmas[0] | |
w2 = sigmas[i + 1] / w | |
w3 = sigmas[i + 2] / w | |
w1 = 1 - w2 - w3 | |
d_prime = w1 * d + w2 * d_2 + w3 * d_3 | |
x = x + d_prime * dt | |
return x | |