Spaces:
Building
on
A10G
Building
on
A10G
import torch | |
import comfy.model_management | |
import comfy.sample | |
import comfy.samplers | |
import comfy.utils | |
class PerpNeg: | |
def INPUT_TYPES(s): | |
return {"required": {"model": ("MODEL", ), | |
"empty_conditioning": ("CONDITIONING", ), | |
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing" | |
def patch(self, model, empty_conditioning, neg_scale): | |
m = model.clone() | |
nocond = comfy.sample.convert_cond(empty_conditioning) | |
def cfg_function(args): | |
model = args["model"] | |
noise_pred_pos = args["cond_denoised"] | |
noise_pred_neg = args["uncond_denoised"] | |
cond_scale = args["cond_scale"] | |
x = args["input"] | |
sigma = args["sigma"] | |
model_options = args["model_options"] | |
nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative") | |
(noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options) | |
pos = noise_pred_pos - noise_pred_nocond | |
neg = noise_pred_neg - noise_pred_nocond | |
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos | |
perp_neg = perp * neg_scale | |
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg) | |
cfg_result = x - cfg_result | |
return cfg_result | |
m.set_model_sampler_cfg_function(cfg_function) | |
return (m, ) | |
NODE_CLASS_MAPPINGS = { | |
"PerpNeg": PerpNeg, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"PerpNeg": "Perp-Neg", | |
} | |