Spaces:
Building
on
A10G
Building
on
A10G
import folder_paths | |
import comfy.sd | |
import comfy.model_sampling | |
import comfy.latent_formats | |
import torch | |
class LCM(comfy.model_sampling.EPS): | |
def calculate_denoised(self, sigma, model_output, model_input): | |
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
x0 = model_input - model_output * sigma | |
sigma_data = 0.5 | |
scaled_timestep = timestep * 10.0 #timestep_scaling | |
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) | |
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 | |
return c_out * x0 + c_skip * model_input | |
class X0(comfy.model_sampling.EPS): | |
def calculate_denoised(self, sigma, model_output, model_input): | |
return model_output | |
class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete): | |
original_timesteps = 50 | |
def __init__(self, model_config=None): | |
super().__init__(model_config) | |
self.skip_steps = self.num_timesteps // self.original_timesteps | |
sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32) | |
for x in range(self.original_timesteps): | |
sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps] | |
self.set_sigmas(sigmas_valid) | |
def timestep(self, sigma): | |
log_sigma = sigma.log() | |
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] | |
return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device) | |
def sigma(self, timestep): | |
t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1)) | |
low_idx = t.floor().long() | |
high_idx = t.ceil().long() | |
w = t.frac() | |
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] | |
return log_sigma.exp().to(timestep.device) | |
def rescale_zero_terminal_snr_sigmas(sigmas): | |
alphas_cumprod = 1 / ((sigmas * sigmas) + 1) | |
alphas_bar_sqrt = alphas_cumprod.sqrt() | |
# Store old values. | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
# Shift so the last timestep is zero. | |
alphas_bar_sqrt -= (alphas_bar_sqrt_T) | |
# Scale so the first timestep is back to the old value. | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
# Convert alphas_bar_sqrt to betas | |
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
alphas_bar[-1] = 4.8973451890853435e-08 | |
return ((1 - alphas_bar) / alphas_bar) ** 0.5 | |
class ModelSamplingDiscrete: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"sampling": (["eps", "v_prediction", "lcm", "x0"],), | |
"zsnr": ("BOOLEAN", {"default": False}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "advanced/model" | |
def patch(self, model, sampling, zsnr): | |
m = model.clone() | |
sampling_base = comfy.model_sampling.ModelSamplingDiscrete | |
if sampling == "eps": | |
sampling_type = comfy.model_sampling.EPS | |
elif sampling == "v_prediction": | |
sampling_type = comfy.model_sampling.V_PREDICTION | |
elif sampling == "lcm": | |
sampling_type = LCM | |
sampling_base = ModelSamplingDiscreteDistilled | |
elif sampling == "x0": | |
sampling_type = X0 | |
class ModelSamplingAdvanced(sampling_base, sampling_type): | |
pass | |
model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
if zsnr: | |
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas)) | |
m.add_object_patch("model_sampling", model_sampling) | |
return (m, ) | |
class ModelSamplingStableCascade: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"shift": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step":0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "advanced/model" | |
def patch(self, model, shift): | |
m = model.clone() | |
sampling_base = comfy.model_sampling.StableCascadeSampling | |
sampling_type = comfy.model_sampling.EPS | |
class ModelSamplingAdvanced(sampling_base, sampling_type): | |
pass | |
model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
model_sampling.set_parameters(shift) | |
m.add_object_patch("model_sampling", model_sampling) | |
return (m, ) | |
class ModelSamplingContinuousEDM: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"sampling": (["v_prediction", "edm_playground_v2.5", "eps"],), | |
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}), | |
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "advanced/model" | |
def patch(self, model, sampling, sigma_max, sigma_min): | |
m = model.clone() | |
latent_format = None | |
sigma_data = 1.0 | |
if sampling == "eps": | |
sampling_type = comfy.model_sampling.EPS | |
elif sampling == "v_prediction": | |
sampling_type = comfy.model_sampling.V_PREDICTION | |
elif sampling == "edm_playground_v2.5": | |
sampling_type = comfy.model_sampling.EDM | |
sigma_data = 0.5 | |
latent_format = comfy.latent_formats.SDXL_Playground_2_5() | |
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type): | |
pass | |
model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data) | |
m.add_object_patch("model_sampling", model_sampling) | |
if latent_format is not None: | |
m.add_object_patch("latent_format", latent_format) | |
return (m, ) | |
class RescaleCFG: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "advanced/model" | |
def patch(self, model, multiplier): | |
def rescale_cfg(args): | |
cond = args["cond"] | |
uncond = args["uncond"] | |
cond_scale = args["cond_scale"] | |
sigma = args["sigma"] | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1)) | |
x_orig = args["input"] | |
#rescale cfg has to be done on v-pred model output | |
x = x_orig / (sigma * sigma + 1.0) | |
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) | |
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma) | |
#rescalecfg | |
x_cfg = uncond + cond_scale * (cond - uncond) | |
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) | |
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) | |
x_rescaled = x_cfg * (ro_pos / ro_cfg) | |
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg | |
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5) | |
m = model.clone() | |
m.set_model_sampler_cfg_function(rescale_cfg) | |
return (m, ) | |
NODE_CLASS_MAPPINGS = { | |
"ModelSamplingDiscrete": ModelSamplingDiscrete, | |
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM, | |
"ModelSamplingStableCascade": ModelSamplingStableCascade, | |
"RescaleCFG": RescaleCFG, | |
} | |