Spaces:
Runtime error
Runtime error
check spaces zero
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ import time
|
|
16 |
import cv2
|
17 |
import numpy as np
|
18 |
|
|
|
19 |
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
dtype = torch.float16
|
@@ -42,10 +43,13 @@ pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
|
42 |
use_safetensors=True,
|
43 |
scheduler=scheduler,
|
44 |
)
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
pipe.enable_vae_tiling()
|
48 |
|
|
|
49 |
compel = Compel(
|
50 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
51 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
@@ -54,6 +58,9 @@ compel = Compel(
|
|
54 |
)
|
55 |
pipe = pipe.to(device)
|
56 |
|
|
|
|
|
|
|
57 |
|
58 |
def pad_image(image):
|
59 |
w, h = image.size
|
@@ -87,7 +94,8 @@ def predict(
|
|
87 |
controlnet_end=1.0,
|
88 |
progress=gr.Progress(track_tqdm=True),
|
89 |
):
|
90 |
-
|
|
|
91 |
if input_image is None:
|
92 |
raise gr.Error("Please upload an image.")
|
93 |
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|
|
|
16 |
import cv2
|
17 |
import numpy as np
|
18 |
|
19 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
dtype = torch.float16
|
|
|
43 |
use_safetensors=True,
|
44 |
scheduler=scheduler,
|
45 |
)
|
46 |
+
if not IS_SPACES_ZERO:
|
47 |
+
pipe.enable_xformers_memory_efficient_attention()
|
48 |
+
pipe.enable_model_cpu_offload()
|
49 |
+
|
50 |
pipe.enable_vae_tiling()
|
51 |
|
52 |
+
|
53 |
compel = Compel(
|
54 |
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
|
55 |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
|
|
|
58 |
)
|
59 |
pipe = pipe.to(device)
|
60 |
|
61 |
+
if not IS_SPACES_ZERO:
|
62 |
+
apply_hidiffusion(pipe)
|
63 |
+
|
64 |
|
65 |
def pad_image(image):
|
66 |
w, h = image.size
|
|
|
94 |
controlnet_end=1.0,
|
95 |
progress=gr.Progress(track_tqdm=True),
|
96 |
):
|
97 |
+
if IS_SPACES_ZERO:
|
98 |
+
apply_hidiffusion(pipe)
|
99 |
if input_image is None:
|
100 |
raise gr.Error("Please upload an image.")
|
101 |
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
|