radames commited on
Commit
9c8f346
1 Parent(s): 3e49974

check spaces zero

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -16,6 +16,7 @@ import time
16
  import cv2
17
  import numpy as np
18
 
 
19
 
20
  device = "cuda" if torch.cuda.is_available() else "cpu"
21
  dtype = torch.float16
@@ -42,10 +43,13 @@ pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
42
  use_safetensors=True,
43
  scheduler=scheduler,
44
  )
45
- # pipe.enable_xformers_memory_efficient_attention()
46
- # pipe.enable_model_cpu_offload()
 
 
47
  pipe.enable_vae_tiling()
48
 
 
49
  compel = Compel(
50
  tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
51
  text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
@@ -54,6 +58,9 @@ compel = Compel(
54
  )
55
  pipe = pipe.to(device)
56
 
 
 
 
57
 
58
  def pad_image(image):
59
  w, h = image.size
@@ -87,7 +94,8 @@ def predict(
87
  controlnet_end=1.0,
88
  progress=gr.Progress(track_tqdm=True),
89
  ):
90
- apply_hidiffusion(pipe)
 
91
  if input_image is None:
92
  raise gr.Error("Please upload an image.")
93
  padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
 
16
  import cv2
17
  import numpy as np
18
 
19
+ IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
22
  dtype = torch.float16
 
43
  use_safetensors=True,
44
  scheduler=scheduler,
45
  )
46
+ if not IS_SPACES_ZERO:
47
+ pipe.enable_xformers_memory_efficient_attention()
48
+ pipe.enable_model_cpu_offload()
49
+
50
  pipe.enable_vae_tiling()
51
 
52
+
53
  compel = Compel(
54
  tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
55
  text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
 
58
  )
59
  pipe = pipe.to(device)
60
 
61
+ if not IS_SPACES_ZERO:
62
+ apply_hidiffusion(pipe)
63
+
64
 
65
  def pad_image(image):
66
  w, h = image.size
 
94
  controlnet_end=1.0,
95
  progress=gr.Progress(track_tqdm=True),
96
  ):
97
+ if IS_SPACES_ZERO:
98
+ apply_hidiffusion(pipe)
99
  if input_image is None:
100
  raise gr.Error("Please upload an image.")
101
  padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")