radames commited on
Commit
8a54a25
·
1 Parent(s): 74a2acd
Files changed (2) hide show
  1. app.py +9 -4
  2. requirements.txt +1 -1
app.py CHANGED
@@ -9,14 +9,19 @@ import os
9
  import time
10
  import uuid
11
 
12
- LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
13
 
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
  dtype = torch.float16
16
 
17
- multi_decoder = (
18
  torch.cuda.get_device_properties(0).total_memory < 18 * 1024 * 1024 * 1024
19
  )
 
 
 
 
 
 
20
 
21
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
22
  pipe = DiffusionPipeline.from_pretrained(
@@ -91,7 +96,7 @@ def predict(
91
  cosine_scale_2=1,
92
  cosine_scale_3=1,
93
  sigma=0.8,
94
- multi_decoder=multi_decoder,
95
  show_image=False,
96
  lowvram=LOW_MEMORY,
97
  )
@@ -122,7 +127,7 @@ with gr.Blocks(css=css) as demo:
122
  [DemoFusion](https://ruoyidu.github.io/demofusion/demofusion.html) enables higher-resolution image generation.
123
  You can upload an initial image and prompt to generate an enhanced version.
124
  [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL?duplicate=true) to avoid the queue.
125
- GPU Time Comparison: T4: - A10G: ~175s A100: RTX 4090: ~88.8s
126
 
127
  <small>
128
  <b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
 
9
  import time
10
  import uuid
11
 
 
12
 
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
  dtype = torch.float16
15
 
16
+ MULTI_DECODER = (
17
  torch.cuda.get_device_properties(0).total_memory < 18 * 1024 * 1024 * 1024
18
  )
19
+ LOW_MEMORY = os.getenv("LOW_MEMORY", not MULTI_DECODER) == "1"
20
+
21
+ print(f"device: {device}")
22
+ print(f"dtype: {dtype}")
23
+ print(f"multi decoder: {MULTI_DECODER}")
24
+ print(f"low memory: {LOW_MEMORY}")
25
 
26
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
27
  pipe = DiffusionPipeline.from_pretrained(
 
96
  cosine_scale_2=1,
97
  cosine_scale_3=1,
98
  sigma=0.8,
99
+ multi_decoder=MULTI_DECODER,
100
  show_image=False,
101
  lowvram=LOW_MEMORY,
102
  )
 
127
  [DemoFusion](https://ruoyidu.github.io/demofusion/demofusion.html) enables higher-resolution image generation.
128
  You can upload an initial image and prompt to generate an enhanced version.
129
  [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL?duplicate=true) to avoid the queue.
130
+ GPU Time Comparison: T4: - A10G: ~175s A100: RTX 4090: ~48.1s
131
 
132
  <small>
133
  <b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
requirements.txt CHANGED
@@ -10,4 +10,4 @@ accelerate
10
  invisible-watermark
11
  huggingface-hub
12
  hf-transfer
13
- gradio_imageslider==0.0.14
 
10
  invisible-watermark
11
  huggingface-hub
12
  hf-transfer
13
+ https://huggingface.co/datasets/radames/gradio-components/resolve/main/gradio_imageslider-0.0.13-py3-none-any.whl