radames's picture
examples
56624ff
raw
history blame
5.29 kB
import gradio as gr
from gradio_imageslider import ImageSlider
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
from PIL import Image
from torchvision import transforms
import tempfile
import os
import time
import uuid
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
custom_pipeline="pipeline_demofusion_sdxl.py",
custom_revision="main",
torch_dtype=dtype,
variant="fp16",
use_safetensors=True,
vae=vae,
)
pipe = pipe.to(device)
def load_and_process_image(pil_image):
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
image = transform(pil_image)
image = image.unsqueeze(0).half()
return image
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
pad_w = 0
pad_h = (w - h) // 2
new_image.paste(image, (0, pad_h))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
pad_w = (h - w) // 2
pad_h = 0
new_image.paste(image, (pad_w, 0))
return new_image
def predict(
input_image,
prompt,
negative_prompt,
seed,
scale=2,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an image.")
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
image_lr = load_and_process_image(padded_image).to(device)
generator = torch.manual_seed(seed)
last_time = time.time()
images = pipe(
prompt,
negative_prompt=negative_prompt,
image_lr=image_lr,
width=1024 * scale,
height=1024 * scale,
view_batch_size=16,
stride=64,
generator=generator,
num_inference_steps=25,
guidance_scale=7.5,
cosine_scale_1=3,
cosine_scale_2=1,
cosine_scale_3=1,
sigma=0.8,
multi_decoder=True,
show_image=False,
lowvram=LOW_MEMORY,
)
print(f"Time taken: {time.time() - last_time}")
images_path = tempfile.mkdtemp()
paths = []
uuid_name = uuid.uuid4()
for i, img in enumerate(images):
img.save(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg")
paths.append(images_path + f"/img_{uuid_name}_{img.size[0]}.jpg")
return (images[0], images[-1]), paths
css = """
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""# Super Resolution - SDXL
## [DemoFusion](https://github.com/PRIS-CV/DemoFusion)""",
elem_id="intro",
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image")
prompt = gr.Textbox(
label="Prompt",
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can.",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
)
scale = gr.Slider(minimum=2, maximum=5, value=2, step=1, label="x Scale")
seed = gr.Slider(
minimum=0,
maximum=2**64 - 1,
value=1415926535897932,
step=1,
label="Seed",
randomize=True,
)
btn = gr.Button()
with gr.Column(scale=2):
image_slider = ImageSlider()
files = gr.Files()
inputs = [image_input, prompt, negative_prompt, seed, scale]
outputs = [image_slider, files]
btn.click(predict, inputs=inputs, outputs=outputs, concurrency_limit=1)
gr.Examples(
fn=predict,
examples=[
[
"./examples/lara.jpeg",
"photography of lara croft 8k high definition award winning",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
1415926535897932,
2,
],
[
"./examples/cybetruck.jpeg",
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
1415535897932,
2,
],
[
"./examples/jesus.png",
"a photorealistic painting of Jesus Christ, 4k high definition",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
1415535897932,
2,
],
],
inputs=inputs,
outputs=outputs,
cache_examples=True,
)
demo.queue(api_open=False)
demo.launch(show_api=False)