|
|
|
import init, { ModelEncoder } from "./build/m.js"; |
|
|
|
async function fetchArrayBuffer(url) { |
|
const cacheName = "t5-candle-cache"; |
|
const cache = await caches.open(cacheName); |
|
const cachedResponse = await cache.match(url); |
|
if (cachedResponse) { |
|
const data = await cachedResponse.arrayBuffer(); |
|
return new Uint8Array(data); |
|
} |
|
const res = await fetch(url, { cache: "force-cache" }); |
|
cache.put(url, res.clone()); |
|
return new Uint8Array(await res.arrayBuffer()); |
|
} |
|
class Encoder { |
|
static instance = {}; |
|
|
|
static async getInstance(weightsURL, tokenizerURL, configURL, modelID) { |
|
if (!this.instance[modelID]) { |
|
await init(); |
|
|
|
self.postMessage({ status: "loading", message: "Loading Model" }); |
|
const [weightsArrayU8, tokenizerArrayU8, configArrayU8] = |
|
await Promise.all([ |
|
fetchArrayBuffer(weightsURL), |
|
fetchArrayBuffer(tokenizerURL), |
|
fetchArrayBuffer(configURL), |
|
]); |
|
|
|
this.instance[modelID] = new ModelEncoder( |
|
weightsArrayU8, |
|
tokenizerArrayU8, |
|
configArrayU8 |
|
); |
|
} else { |
|
self.postMessage({ status: "ready", message: "Model Already Loaded" }); |
|
} |
|
return this.instance[modelID]; |
|
} |
|
} |
|
|
|
self.addEventListener("message", async (event) => { |
|
const { |
|
weightsURL, |
|
tokenizerURL, |
|
configURL, |
|
modelID, |
|
sentences, |
|
normalize_embeddings, |
|
} = event.data; |
|
try { |
|
self.postMessage({ status: "ready", message: "Starting T5 Encoder" }); |
|
const model = await Encoder.getInstance( |
|
weightsURL, |
|
tokenizerURL, |
|
configURL, |
|
modelID |
|
); |
|
self.postMessage({ |
|
status: "encoding", |
|
message: "Encoding Sentences", |
|
}); |
|
const output = model.decode({ |
|
sentences: sentences, |
|
normalize_embeddings: normalize_embeddings || true, |
|
}); |
|
self.postMessage({ |
|
status: "complete", |
|
message: "complete", |
|
output: output, |
|
}); |
|
} catch (e) { |
|
self.postMessage({ error: e }); |
|
} |
|
}); |
|
|