Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from langchain_community.document_loaders import WebBaseLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_openai import OpenAIEmbeddings, ChatOpenAI | |
| from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
| from langchain.chains import create_history_aware_retriever,create_retrieval_chain | |
| from langchain.chains.combine_documents import create_stuff_documents_chain | |
| from dotenv import load_dotenv | |
| import os | |
| load_dotenv() | |
| KEY=os.getenv("MY_KEY") | |
| def get_vectorstore_from_url(url): | |
| # get the text in document form | |
| loader = WebBaseLoader(url) | |
| document = loader.load() | |
| # split the document into chunks | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, | |
| chunk_overlap=10, | |
| length_function=len) | |
| document_chunks = text_splitter.split_documents(document) | |
| # create a vectorstore from the chunks | |
| vector_store = Chroma.from_documents(document_chunks, | |
| OpenAIEmbeddings(openai_api_key=KEY)) | |
| return vector_store | |
| def get_response(user_input): | |
| retriever_chain = get_context_retriever_chain(st.session_state.vector_store) | |
| conversation_rag_chain = get_conversational_rag_chain(retriever_chain) | |
| response = conversation_rag_chain.invoke({ | |
| "chat_history": st.session_state.chat_history, | |
| "input": user_input | |
| }) | |
| return response['answer'] | |
| def get_context_retriever_chain(vector_store): | |
| llm = ChatOpenAI(openai_api_key=KEY) | |
| retriever = vector_store.as_retriever() | |
| prompt = ChatPromptTemplate.from_messages([ | |
| MessagesPlaceholder(variable_name="chat_history"), | |
| ("user", "{input}"), | |
| ("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") | |
| ]) | |
| retriever_chain = create_history_aware_retriever(llm, retriever, prompt) | |
| return retriever_chain | |
| def get_conversational_rag_chain(retriever_chain): | |
| llm = ChatOpenAI(openai_api_key=KEY) | |
| prompt = ChatPromptTemplate.from_messages([ | |
| ("system", "Answer the user's questions based on the below context:\n\n{context}"), | |
| MessagesPlaceholder(variable_name="chat_history"), | |
| ("user", "{input}"), | |
| ]) | |
| stuff_documents_chain = create_stuff_documents_chain(llm,prompt) | |
| return create_retrieval_chain(retriever_chain, stuff_documents_chain) | |