Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,68 @@
|
|
1 |
-
from sumy.parsers.plaintext import PlaintextParser
|
2 |
-
from sumy.nlp.tokenizers import Tokenizer
|
3 |
-
from sumy.summarizers.luhn import LuhnSummarizer
|
4 |
-
from sumy.nlp.stemmers import Stemmer
|
5 |
-
from sumy.utils import get_stop_words
|
6 |
-
import gradio as gr
|
7 |
-
import nltk
|
8 |
-
import time
|
9 |
-
|
10 |
-
def luhn_summarizer(text_corpus):
|
11 |
-
start_time = time.time()
|
12 |
-
parser = PlaintextParser.from_string(text_corpus, Tokenizer("english"))
|
13 |
-
stemmer = Stemmer("english")
|
14 |
-
summarizer = LuhnSummarizer(stemmer)
|
15 |
-
summarizer.stop_words = get_stop_words("english")
|
16 |
-
sentences = summarizer(parser.document,
|
17 |
-
summary = ""
|
18 |
-
for sentence in sentences:
|
19 |
-
summary += str(sentence) + ""
|
20 |
-
end_time = time.time()
|
21 |
-
print(f"Time taken: {end_time - start_time:.2f} seconds")
|
22 |
-
return summary
|
23 |
-
|
24 |
-
def clear_everything(text_corpus, summary):
|
25 |
-
return None, None
|
26 |
-
|
27 |
-
theme = gr.themes.Soft(
|
28 |
-
primary_hue="purple",
|
29 |
-
secondary_hue="cyan",
|
30 |
-
neutral_hue="slate",
|
31 |
-
font=[
|
32 |
-
gr.themes.GoogleFont('Syne'),
|
33 |
-
gr.themes.GoogleFont('Poppins'),
|
34 |
-
gr.themes.GoogleFont('Poppins'),
|
35 |
-
gr.themes.GoogleFont('Poppins')
|
36 |
-
],
|
37 |
-
)
|
38 |
-
|
39 |
-
with gr.Blocks(theme=theme, title="Luhn Summarizer", fill_height=True) as app:
|
40 |
-
gr.HTML(
|
41 |
-
value ='''
|
42 |
-
<h1 style="text-align: center;">Luhn Summarizer</h1>
|
43 |
-
<p style="text-align: center;">This app uses a Luhn approach to summarize PDF documents based on CPU.</p>
|
44 |
-
<p style="text-align: center;">The summarization process can take some time depending on the size of the text corpus and the complexity of the content.</p>
|
45 |
-
''')
|
46 |
-
with gr.Row():
|
47 |
-
with gr.Column():
|
48 |
-
text_corpus = gr.TextArea(label="Text Corpus", placeholder="Paste the text corpus here", lines=5)
|
49 |
-
with gr.Row():
|
50 |
-
clear_btn = gr.Button(value="Clear", variant='stop')
|
51 |
-
summarize_btn = gr.Button(value="Summarize", variant='primary')
|
52 |
-
summary = gr.TextArea(label="Raw Data", placeholder="The generated raw data will be displayed here", lines=7, interactive=False, show_copy_button=True)
|
53 |
-
|
54 |
-
summarize_btn.click(
|
55 |
-
luhn_summarizer,
|
56 |
-
inputs=[text_corpus],
|
57 |
-
outputs=[summary],
|
58 |
-
concurrency_limit=25,
|
59 |
-
scroll_to_output=True,
|
60 |
-
show_api=True,
|
61 |
-
api_name="luhn_summarizer",
|
62 |
-
show_progress="full",
|
63 |
-
)
|
64 |
-
clear_btn.click(clear_everything, inputs=[text_corpus, summary], outputs=[text_corpus, summary], show_api=False)
|
65 |
-
|
66 |
-
nltk.download('punkt', quiet=True)
|
67 |
-
nltk.download('punkt_tab', quiet=True)
|
68 |
-
app.queue(default_concurrency_limit=25).launch(show_api=True, max_threads=500, ssr_mode=False)
|
|
|
1 |
+
from sumy.parsers.plaintext import PlaintextParser
|
2 |
+
from sumy.nlp.tokenizers import Tokenizer
|
3 |
+
from sumy.summarizers.luhn import LuhnSummarizer
|
4 |
+
from sumy.nlp.stemmers import Stemmer
|
5 |
+
from sumy.utils import get_stop_words
|
6 |
+
import gradio as gr
|
7 |
+
import nltk
|
8 |
+
import time
|
9 |
+
|
10 |
+
def luhn_summarizer(text_corpus):
|
11 |
+
start_time = time.time()
|
12 |
+
parser = PlaintextParser.from_string(text_corpus, Tokenizer("english"))
|
13 |
+
stemmer = Stemmer("english")
|
14 |
+
summarizer = LuhnSummarizer(stemmer)
|
15 |
+
summarizer.stop_words = get_stop_words("english")
|
16 |
+
sentences = summarizer(parser.document, 25)
|
17 |
+
summary = ""
|
18 |
+
for sentence in sentences:
|
19 |
+
summary += str(sentence) + ""
|
20 |
+
end_time = time.time()
|
21 |
+
print(f"Time taken: {end_time - start_time:.2f} seconds")
|
22 |
+
return summary
|
23 |
+
|
24 |
+
def clear_everything(text_corpus, summary):
|
25 |
+
return None, None
|
26 |
+
|
27 |
+
theme = gr.themes.Soft(
|
28 |
+
primary_hue="purple",
|
29 |
+
secondary_hue="cyan",
|
30 |
+
neutral_hue="slate",
|
31 |
+
font=[
|
32 |
+
gr.themes.GoogleFont('Syne'),
|
33 |
+
gr.themes.GoogleFont('Poppins'),
|
34 |
+
gr.themes.GoogleFont('Poppins'),
|
35 |
+
gr.themes.GoogleFont('Poppins')
|
36 |
+
],
|
37 |
+
)
|
38 |
+
|
39 |
+
with gr.Blocks(theme=theme, title="Luhn Summarizer", fill_height=True) as app:
|
40 |
+
gr.HTML(
|
41 |
+
value ='''
|
42 |
+
<h1 style="text-align: center;">Luhn Summarizer</h1>
|
43 |
+
<p style="text-align: center;">This app uses a Luhn approach to summarize PDF documents based on CPU.</p>
|
44 |
+
<p style="text-align: center;">The summarization process can take some time depending on the size of the text corpus and the complexity of the content.</p>
|
45 |
+
''')
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
text_corpus = gr.TextArea(label="Text Corpus", placeholder="Paste the text corpus here", lines=5)
|
49 |
+
with gr.Row():
|
50 |
+
clear_btn = gr.Button(value="Clear", variant='stop')
|
51 |
+
summarize_btn = gr.Button(value="Summarize", variant='primary')
|
52 |
+
summary = gr.TextArea(label="Raw Data", placeholder="The generated raw data will be displayed here", lines=7, interactive=False, show_copy_button=True)
|
53 |
+
|
54 |
+
summarize_btn.click(
|
55 |
+
luhn_summarizer,
|
56 |
+
inputs=[text_corpus],
|
57 |
+
outputs=[summary],
|
58 |
+
concurrency_limit=25,
|
59 |
+
scroll_to_output=True,
|
60 |
+
show_api=True,
|
61 |
+
api_name="luhn_summarizer",
|
62 |
+
show_progress="full",
|
63 |
+
)
|
64 |
+
clear_btn.click(clear_everything, inputs=[text_corpus, summary], outputs=[text_corpus, summary], show_api=False)
|
65 |
+
|
66 |
+
nltk.download('punkt', quiet=True)
|
67 |
+
nltk.download('punkt_tab', quiet=True)
|
68 |
+
app.queue(default_concurrency_limit=25).launch(show_api=True, max_threads=500, ssr_mode=False)
|