RVC_HF / rvc /lib /process /model_fusion.py
r3gm's picture
files
796ef9a
raw
history blame
1.07 kB
import torch
from collections import OrderedDict
def extract(ckpt):
model = ckpt["model"]
opt = OrderedDict()
opt["weight"] = {key: value for key, value in model.items() if "enc_q" not in key}
return opt
def model_fusion(model_name, pth_path_1, pth_path_2):
ckpt1 = torch.load(pth_path_1, map_location="cpu")
ckpt2 = torch.load(pth_path_2, map_location="cpu")
if "model" in ckpt1:
ckpt1 = extract(ckpt1)
else:
ckpt1 = ckpt1["weight"]
if "model" in ckpt2:
ckpt2 = extract(ckpt2)
else:
ckpt2 = ckpt2["weight"]
if sorted(ckpt1.keys()) != sorted(ckpt2.keys()):
return "Fail to merge the models. The model architectures are not the same."
opt = OrderedDict(
weight={
key: 1 * value.float() + (1 - 1) * ckpt2[key].float()
for key, value in ckpt1.items()
}
)
opt["info"] = f"Model fusion of {pth_path_1} and {pth_path_2}"
torch.save(opt, f"logs/{model_name}.pth")
print(f"Model fusion of {pth_path_1} and {pth_path_2} is done.")