Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import gradio as gr | |
from constants import ( | |
DIFFUSERS_FORMAT_LORAS, | |
CIVITAI_API_KEY, | |
HF_TOKEN, | |
MODEL_TYPE_CLASS, | |
DIRECTORY_LORAS, | |
DIRECTORY_MODELS, | |
DIFFUSECRAFT_CHECKPOINT_NAME, | |
CACHE_HF, | |
STORAGE_ROOT, | |
) | |
from huggingface_hub import HfApi | |
from huggingface_hub import snapshot_download | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import model_info as model_info_data | |
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings | |
from stablepy.diffusers_vanilla.utils import checkpoint_model_type | |
from pathlib import PosixPath | |
from unidecode import unidecode | |
import urllib.parse | |
import copy | |
import requests | |
from requests.adapters import HTTPAdapter | |
from urllib3.util import Retry | |
import shutil | |
import subprocess | |
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' | |
def request_json_data(url): | |
model_version_id = url.split('/')[-1] | |
if "?modelVersionId=" in model_version_id: | |
match = re.search(r'modelVersionId=(\d+)', url) | |
model_version_id = match.group(1) | |
endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}" | |
params = {} | |
headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'} | |
session = requests.Session() | |
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) | |
session.mount("https://", HTTPAdapter(max_retries=retries)) | |
try: | |
result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) | |
result.raise_for_status() | |
json_data = result.json() | |
return json_data if json_data else None | |
except Exception as e: | |
print(f"Error: {e}") | |
return None | |
class ModelInformation: | |
def __init__(self, json_data): | |
self.model_version_id = json_data.get("id", "") | |
self.model_id = json_data.get("modelId", "") | |
self.download_url = json_data.get("downloadUrl", "") | |
self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}" | |
self.filename_url = next( | |
(v.get("name", "") for v in reversed(json_data.get("files", [])) if str(self.model_version_id) in v.get("downloadUrl", "")), "" | |
) | |
self.filename_url = self.filename_url if self.filename_url else "" | |
self.description = json_data.get("description", "") | |
if self.description is None: self.description = "" | |
self.model_name = json_data.get("model", {}).get("name", "") | |
self.model_type = json_data.get("model", {}).get("type", "") | |
self.nsfw = json_data.get("model", {}).get("nsfw", False) | |
self.poi = json_data.get("model", {}).get("poi", False) | |
self.images = [img.get("url", "") for img in json_data.get("images", [])] | |
self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else "" | |
self.original_json = copy.deepcopy(json_data) | |
def retrieve_model_info(url): | |
json_data = request_json_data(url) | |
if not json_data: | |
return None | |
model_descriptor = ModelInformation(json_data) | |
return model_descriptor | |
def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False): | |
url = url.strip() | |
downloaded_file_path = None | |
if "drive.google.com" in url: | |
original_dir = os.getcwd() | |
os.chdir(directory) | |
os.system(f"gdown --fuzzy {url}") | |
os.chdir(original_dir) | |
elif "huggingface.co" in url: | |
url = url.replace("?download=true", "") | |
# url = urllib.parse.quote(url, safe=':/') # fix encoding | |
if "/blob/" in url: | |
url = url.replace("/blob/", "/resolve/") | |
user_header = f'"Authorization: Bearer {hf_token}"' | |
filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1] | |
if hf_token: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}") | |
else: | |
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}") | |
downloaded_file_path = os.path.join(directory, filename) | |
elif "civitai.com" in url: | |
if not civitai_api_key: | |
print("\033[91mYou need an API key to download Civitai models.\033[0m") | |
model_profile = retrieve_model_info(url) | |
if ( | |
model_profile is not None | |
and model_profile.download_url | |
and model_profile.filename_url | |
): | |
url = model_profile.download_url | |
filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url | |
else: | |
if "?" in url: | |
url = url.split("?")[0] | |
filename = "" | |
url_dl = url + f"?token={civitai_api_key}" | |
print(f"Filename: {filename}") | |
param_filename = "" | |
if filename: | |
param_filename = f"-o '{filename}'" | |
aria2_command = ( | |
f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 ' | |
f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"' | |
) | |
os.system(aria2_command) | |
if param_filename and os.path.exists(os.path.join(directory, filename)): | |
downloaded_file_path = os.path.join(directory, filename) | |
# # PLAN B | |
# # Follow the redirect to get the actual download URL | |
# curl_command = ( | |
# f'curl -L -sI --connect-timeout 5 --max-time 5 ' | |
# f'-H "Content-Type: application/json" ' | |
# f'-H "Authorization: Bearer {civitai_api_key}" "{url}"' | |
# ) | |
# headers = os.popen(curl_command).read() | |
# # Look for the redirected "Location" URL | |
# location_match = re.search(r'location: (.+)', headers, re.IGNORECASE) | |
# if location_match: | |
# redirect_url = location_match.group(1).strip() | |
# # Extract the filename from the redirect URL's "Content-Disposition" | |
# filename_match = re.search(r'filename%3D%22(.+?)%22', redirect_url) | |
# if filename_match: | |
# encoded_filename = filename_match.group(1) | |
# # Decode the URL-encoded filename | |
# decoded_filename = urllib.parse.unquote(encoded_filename) | |
# filename = unidecode(decoded_filename) if romanize else decoded_filename | |
# print(f"Filename: {filename}") | |
# aria2_command = ( | |
# f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 ' | |
# f'-k 1M -s 16 -d "{directory}" -o "{filename}" "{redirect_url}"' | |
# ) | |
# return_code = os.system(aria2_command) | |
# # if return_code != 0: | |
# # raise RuntimeError(f"Failed to download file: {filename}. Error code: {return_code}") | |
# downloaded_file_path = os.path.join(directory, filename) | |
# if not os.path.exists(downloaded_file_path): | |
# downloaded_file_path = None | |
# if not downloaded_file_path: | |
# # Old method | |
# if "?" in url: | |
# url = url.split("?")[0] | |
# url = url + f"?token={civitai_api_key}" | |
# os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
else: | |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") | |
return downloaded_file_path | |
def get_model_list(directory_path): | |
model_list = [] | |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'} | |
for filename in os.listdir(directory_path): | |
if os.path.splitext(filename)[1] in valid_extensions: | |
# name_without_extension = os.path.splitext(filename)[0] | |
file_path = os.path.join(directory_path, filename) | |
# model_list.append((name_without_extension, file_path)) | |
model_list.append(file_path) | |
print('\033[34mFILE: ' + file_path + '\033[0m') | |
return model_list | |
def extract_parameters(input_string): | |
parameters = {} | |
input_string = input_string.replace("\n", "") | |
if "Negative prompt:" not in input_string: | |
if "Steps:" in input_string: | |
input_string = input_string.replace("Steps:", "Negative prompt: Steps:") | |
else: | |
print("Invalid metadata") | |
parameters["prompt"] = input_string | |
return parameters | |
parm = input_string.split("Negative prompt:") | |
parameters["prompt"] = parm[0].strip() | |
if "Steps:" not in parm[1]: | |
print("Steps not detected") | |
parameters["neg_prompt"] = parm[1].strip() | |
return parameters | |
parm = parm[1].split("Steps:") | |
parameters["neg_prompt"] = parm[0].strip() | |
input_string = "Steps:" + parm[1] | |
# Extracting Steps | |
steps_match = re.search(r'Steps: (\d+)', input_string) | |
if steps_match: | |
parameters['Steps'] = int(steps_match.group(1)) | |
# Extracting Size | |
size_match = re.search(r'Size: (\d+x\d+)', input_string) | |
if size_match: | |
parameters['Size'] = size_match.group(1) | |
width, height = map(int, parameters['Size'].split('x')) | |
parameters['width'] = width | |
parameters['height'] = height | |
# Extracting other parameters | |
other_parameters = re.findall(r'([^,:]+): (.*?)(?=, [^,:]+:|$)', input_string) | |
for param in other_parameters: | |
parameters[param[0].strip()] = param[1].strip('"') | |
return parameters | |
def get_my_lora(link_url, romanize): | |
l_name = "" | |
for url in [url.strip() for url in link_url.split(',')]: | |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"): | |
l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize) | |
new_lora_model_list = get_model_list(DIRECTORY_LORAS) | |
new_lora_model_list.insert(0, "None") | |
new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS | |
msg_lora = "Downloaded" | |
if l_name: | |
msg_lora += f": <b>{l_name}</b>" | |
print(msg_lora) | |
return gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
choices=new_lora_model_list | |
), gr.update( | |
value=msg_lora | |
) | |
def info_html(json_data, title, subtitle): | |
return f""" | |
<div style='padding: 0; border-radius: 10px;'> | |
<p style='margin: 0; font-weight: bold;'>{title}</p> | |
<details> | |
<summary>Details</summary> | |
<p style='margin: 0; font-weight: bold;'>{subtitle}</p> | |
</details> | |
</div> | |
""" | |
def get_model_type(repo_id: str): | |
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model | |
default = "SD 1.5" | |
try: | |
if os.path.exists(repo_id): | |
tag = checkpoint_model_type(repo_id) | |
return DIFFUSECRAFT_CHECKPOINT_NAME[tag] | |
else: | |
model = api.model_info(repo_id=repo_id, timeout=5.0) | |
tags = model.tags | |
for tag in tags: | |
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default) | |
except Exception: | |
return default | |
return default | |
def restart_space(repo_id: str, factory_reboot: bool): | |
api = HfApi(token=os.environ.get("HF_TOKEN")) | |
try: | |
runtime = api.get_space_runtime(repo_id=repo_id) | |
if runtime.stage == "RUNNING": | |
api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot) | |
print(f"Restarting space: {repo_id}") | |
else: | |
print(f"Space {repo_id} is in stage: {runtime.stage}") | |
except Exception as e: | |
print(e) | |
def extract_exif_data(image): | |
if image is None: | |
return "" | |
try: | |
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment'] | |
for key in metadata_keys: | |
if key in image.info: | |
return image.info[key] | |
return str(image.info) | |
except Exception as e: | |
return f"Error extracting metadata: {str(e)}" | |
def create_mask_now(img, invert): | |
import numpy as np | |
import time | |
time.sleep(0.5) | |
transparent_image = img["layers"][0] | |
# Extract the alpha channel | |
alpha_channel = np.array(transparent_image)[:, :, 3] | |
# Create a binary mask by thresholding the alpha channel | |
binary_mask = alpha_channel > 1 | |
if invert: | |
print("Invert") | |
# Invert the binary mask so that the drawn shape is white and the rest is black | |
binary_mask = np.invert(binary_mask) | |
# Convert the binary mask to a 3-channel RGB mask | |
rgb_mask = np.stack((binary_mask,) * 3, axis=-1) | |
# Convert the mask to uint8 | |
rgb_mask = rgb_mask.astype(np.uint8) * 255 | |
return img["background"], rgb_mask | |
def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True): | |
variant = None | |
if token is True and not os.environ.get("HF_TOKEN"): | |
token = None | |
if model_type == "SDXL": | |
info = model_info_data( | |
repo_name, | |
token=token, | |
revision=revision, | |
timeout=5.0, | |
) | |
filenames = {sibling.rfilename for sibling in info.siblings} | |
model_filenames, variant_filenames = variant_compatible_siblings( | |
filenames, variant="fp16" | |
) | |
if len(variant_filenames): | |
variant = "fp16" | |
if model_type == "FLUX": | |
cached_folder = snapshot_download( | |
repo_id=repo_name, | |
allow_patterns="transformer/*" | |
) | |
else: | |
cached_folder = DiffusionPipeline.download( | |
pretrained_model_name=repo_name, | |
force_download=False, | |
token=token, | |
revision=revision, | |
# mirror="https://hf-mirror.com", | |
variant=variant, | |
use_safetensors=True, | |
trust_remote_code=False, | |
timeout=5.0, | |
) | |
if isinstance(cached_folder, PosixPath): | |
cached_folder = cached_folder.as_posix() | |
# Task model | |
# from huggingface_hub import hf_hub_download | |
# hf_hub_download( | |
# task_model, | |
# filename="diffusion_pytorch_model.safetensors", # fix fp16 variant | |
# ) | |
return cached_folder | |
def get_folder_size_gb(folder_path): | |
result = subprocess.run(["du", "-s", folder_path], capture_output=True, text=True) | |
total_size_kb = int(result.stdout.split()[0]) | |
total_size_gb = total_size_kb / (1024 ** 2) | |
return total_size_gb | |
def get_used_storage_gb(): | |
try: | |
used_gb = get_folder_size_gb(STORAGE_ROOT) | |
print(f"Used Storage: {used_gb:.2f} GB") | |
except Exception as e: | |
used_gb = 999 | |
print(f"Error while retrieving the used storage: {e}.") | |
return used_gb | |
def delete_model(removal_candidate): | |
print(f"Removing: {removal_candidate}") | |
if os.path.exists(removal_candidate): | |
os.remove(removal_candidate) | |
else: | |
diffusers_model = f"{CACHE_HF}{DIRECTORY_MODELS}--{removal_candidate.replace('/', '--')}" | |
if os.path.isdir(diffusers_model): | |
shutil.rmtree(diffusers_model) | |
def progress_step_bar(step, total): | |
# Calculate the percentage for the progress bar width | |
percentage = min(100, ((step / total) * 100)) | |
return f""" | |
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;"> | |
<div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div> | |
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;"> | |
{int(percentage)}% | |
</div> | |
</div> | |
""" | |
def html_template_message(msg): | |
return f""" | |
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;"> | |
<div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div> | |
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;"> | |
{msg} | |
</div> | |
</div> | |
""" | |
def escape_html(text): | |
"""Escapes HTML special characters in the input text.""" | |
return text.replace("<", "<").replace(">", ">").replace("\n", "<br>") | |