Spaces:
Running
Running
import torch | |
import numpy as np | |
import sys | |
import torch.nn.functional as torch_nn_func | |
class SineGen(torch.nn.Module): | |
""" Definition of sine generator | |
SineGen(samp_rate, harmonic_num = 0, | |
sine_amp = 0.1, noise_std = 0.003, | |
voiced_threshold = 0, | |
flag_for_pulse=False) | |
samp_rate: sampling rate in Hz | |
harmonic_num: number of harmonic overtones (default 0) | |
sine_amp: amplitude of sine-wavefrom (default 0.1) | |
noise_std: std of Gaussian noise (default 0.003) | |
voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
Note: when flag_for_pulse is True, the first time step of a voiced | |
segment is always sin(np.pi) or cos(0) | |
""" | |
def __init__(self, samp_rate, harmonic_num=0, | |
sine_amp=0.1, noise_std=0.003, | |
voiced_threshold=0, | |
flag_for_pulse=False): | |
super(SineGen, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
self.flag_for_pulse = flag_for_pulse | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = torch.ones_like(f0) | |
uv = uv * (f0 > self.voiced_threshold) | |
return uv | |
def _f02sine(self, f0_values): | |
""" f0_values: (batchsize, length, dim) | |
where dim indicates fundamental tone and overtones | |
""" | |
# convert to F0 in rad. The interger part n can be ignored | |
# because 2 * np.pi * n doesn't affect phase | |
rad_values = (f0_values / self.sampling_rate) % 1 | |
# initial phase noise (no noise for fundamental component) | |
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ | |
device=f0_values.device) | |
rand_ini[:, 0] = 0 | |
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
if not self.flag_for_pulse: | |
# for normal case | |
# To prevent torch.cumsum numerical overflow, | |
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. | |
# Buffer tmp_over_one_idx indicates the time step to add -1. | |
# This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi | |
tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - | |
tmp_over_one[:, :-1, :]) < 0 | |
cumsum_shift = torch.zeros_like(rad_values) | |
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) | |
* 2 * np.pi) | |
else: | |
# If necessary, make sure that the first time step of every | |
# voiced segments is sin(pi) or cos(0) | |
# This is used for pulse-train generation | |
# identify the last time step in unvoiced segments | |
uv = self._f02uv(f0_values) | |
uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
uv_1[:, -1, :] = 1 | |
u_loc = (uv < 1) * (uv_1 > 0) | |
# get the instantanouse phase | |
tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
# different batch needs to be processed differently | |
for idx in range(f0_values.shape[0]): | |
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
# stores the accumulation of i.phase within | |
# each voiced segments | |
tmp_cumsum[idx, :, :] = 0 | |
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
# rad_values - tmp_cumsum: remove the accumulation of i.phase | |
# within the previous voiced segment. | |
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
# get the sines | |
sines = torch.cos(i_phase * 2 * np.pi) | |
return sines | |
def forward(self, f0): | |
""" sine_tensor, uv = forward(f0) | |
input F0: tensor(batchsize=1, length, dim=1) | |
f0 for unvoiced steps should be 0 | |
output sine_tensor: tensor(batchsize=1, length, dim) | |
output uv: tensor(batchsize=1, length, 1) | |
""" | |
with torch.no_grad(): | |
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, | |
device=f0.device) | |
# fundamental component | |
f0_buf[:, :, 0] = f0[:, :, 0] | |
for idx in np.arange(self.harmonic_num): | |
# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic | |
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) | |
# generate sine waveforms | |
sine_waves = self._f02sine(f0_buf) * self.sine_amp | |
# generate uv signal | |
# uv = torch.ones(f0.shape) | |
# uv = uv * (f0 > self.voiced_threshold) | |
uv = self._f02uv(f0) | |
# noise: for unvoiced should be similar to sine_amp | |
# std = self.sine_amp/3 -> max value ~ self.sine_amp | |
# . for voiced regions is self.noise_std | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
# first: set the unvoiced part to 0 by uv | |
# then: additive noise | |
sine_waves = sine_waves * uv + noise | |
return sine_waves, uv, noise | |
class PulseGen(torch.nn.Module): | |
""" Definition of Pulse train generator | |
There are many ways to implement pulse generator. | |
Here, PulseGen is based on SinGen. For a perfect | |
""" | |
def __init__(self, samp_rate, pulse_amp = 0.1, | |
noise_std = 0.003, voiced_threshold = 0): | |
super(PulseGen, self).__init__() | |
self.pulse_amp = pulse_amp | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
self.noise_std = noise_std | |
self.l_sinegen = SineGen(self.sampling_rate, harmonic_num=0, \ | |
sine_amp=self.pulse_amp, noise_std=0, \ | |
voiced_threshold=self.voiced_threshold, \ | |
flag_for_pulse=True) | |
def forward(self, f0): | |
""" Pulse train generator | |
pulse_train, uv = forward(f0) | |
input F0: tensor(batchsize=1, length, dim=1) | |
f0 for unvoiced steps should be 0 | |
output pulse_train: tensor(batchsize=1, length, dim) | |
output uv: tensor(batchsize=1, length, 1) | |
Note: self.l_sine doesn't make sure that the initial phase of | |
a voiced segment is np.pi, the first pulse in a voiced segment | |
may not be at the first time step within a voiced segment | |
""" | |
with torch.no_grad(): | |
sine_wav, uv, noise = self.l_sinegen(f0) | |
# sine without additive noise | |
pure_sine = sine_wav - noise | |
# step t corresponds to a pulse if | |
# sine[t] > sine[t+1] & sine[t] > sine[t-1] | |
# & sine[t-1], sine[t+1], and sine[t] are voiced | |
# or | |
# sine[t] is voiced, sine[t-1] is unvoiced | |
# we use torch.roll to simulate sine[t+1] and sine[t-1] | |
sine_1 = torch.roll(pure_sine, shifts=1, dims=1) | |
uv_1 = torch.roll(uv, shifts=1, dims=1) | |
uv_1[:, 0, :] = 0 | |
sine_2 = torch.roll(pure_sine, shifts=-1, dims=1) | |
uv_2 = torch.roll(uv, shifts=-1, dims=1) | |
uv_2[:, -1, :] = 0 | |
loc = (pure_sine > sine_1) * (pure_sine > sine_2) \ | |
* (uv_1 > 0) * (uv_2 > 0) * (uv > 0) \ | |
+ (uv_1 < 1) * (uv > 0) | |
# pulse train without noise | |
pulse_train = pure_sine * loc | |
# additive noise to pulse train | |
# note that noise from sinegen is zero in voiced regions | |
pulse_noise = torch.randn_like(pure_sine) * self.noise_std | |
# with additive noise on pulse, and unvoiced regions | |
pulse_train += pulse_noise * loc + pulse_noise * (1 - uv) | |
return pulse_train, sine_wav, uv, pulse_noise | |
class SignalsConv1d(torch.nn.Module): | |
""" Filtering input signal with time invariant filter | |
Note: FIRFilter conducted filtering given fixed FIR weight | |
SignalsConv1d convolves two signals | |
Note: this is based on torch.nn.functional.conv1d | |
""" | |
def __init__(self): | |
super(SignalsConv1d, self).__init__() | |
def forward(self, signal, system_ir): | |
""" output = forward(signal, system_ir) | |
signal: (batchsize, length1, dim) | |
system_ir: (length2, dim) | |
output: (batchsize, length1, dim) | |
""" | |
if signal.shape[-1] != system_ir.shape[-1]: | |
print("Error: SignalsConv1d expects shape:") | |
print("signal (batchsize, length1, dim)") | |
print("system_id (batchsize, length2, dim)") | |
print("But received signal: {:s}".format(str(signal.shape))) | |
print(" system_ir: {:s}".format(str(system_ir.shape))) | |
sys.exit(1) | |
padding_length = system_ir.shape[0] - 1 | |
groups = signal.shape[-1] | |
# pad signal on the left | |
signal_pad = torch_nn_func.pad(signal.permute(0, 2, 1), \ | |
(padding_length, 0)) | |
# prepare system impulse response as (dim, 1, length2) | |
# also flip the impulse response | |
ir = torch.flip(system_ir.unsqueeze(1).permute(2, 1, 0), \ | |
dims=[2]) | |
# convolute | |
output = torch_nn_func.conv1d(signal_pad, ir, groups=groups) | |
return output.permute(0, 2, 1) | |
class CyclicNoiseGen_v1(torch.nn.Module): | |
""" CyclicnoiseGen_v1 | |
Cyclic noise with a single parameter of beta. | |
Pytorch v1 implementation assumes f_t is also fixed | |
""" | |
def __init__(self, samp_rate, | |
noise_std=0.003, voiced_threshold=0): | |
super(CyclicNoiseGen_v1, self).__init__() | |
self.samp_rate = samp_rate | |
self.noise_std = noise_std | |
self.voiced_threshold = voiced_threshold | |
self.l_pulse = PulseGen(samp_rate, pulse_amp=1.0, | |
noise_std=noise_std, | |
voiced_threshold=voiced_threshold) | |
self.l_conv = SignalsConv1d() | |
def noise_decay(self, beta, f0mean): | |
""" decayed_noise = noise_decay(beta, f0mean) | |
decayed_noise = n[t]exp(-t * f_mean / beta / samp_rate) | |
beta: (dim=1) or (batchsize=1, 1, dim=1) | |
f0mean (batchsize=1, 1, dim=1) | |
decayed_noise (batchsize=1, length, dim=1) | |
""" | |
with torch.no_grad(): | |
# exp(-1.0 n / T) < 0.01 => n > -log(0.01)*T = 4.60*T | |
# truncate the noise when decayed by -40 dB | |
length = 4.6 * self.samp_rate / f0mean | |
length = length.int() | |
time_idx = torch.arange(0, length, device=beta.device) | |
time_idx = time_idx.unsqueeze(0).unsqueeze(2) | |
time_idx = time_idx.repeat(beta.shape[0], 1, beta.shape[2]) | |
noise = torch.randn(time_idx.shape, device=beta.device) | |
# due to Pytorch implementation, use f0_mean as the f0 factor | |
decay = torch.exp(-time_idx * f0mean / beta / self.samp_rate) | |
return noise * self.noise_std * decay | |
def forward(self, f0s, beta): | |
""" Producde cyclic-noise | |
""" | |
# pulse train | |
pulse_train, sine_wav, uv, noise = self.l_pulse(f0s) | |
pure_pulse = pulse_train - noise | |
# decayed_noise (length, dim=1) | |
if (uv < 1).all(): | |
# all unvoiced | |
cyc_noise = torch.zeros_like(sine_wav) | |
else: | |
f0mean = f0s[uv > 0].mean() | |
decayed_noise = self.noise_decay(beta, f0mean)[0, :, :] | |
# convolute | |
cyc_noise = self.l_conv(pure_pulse, decayed_noise) | |
# add noise in invoiced segments | |
cyc_noise = cyc_noise + noise * (1.0 - uv) | |
return cyc_noise, pulse_train, sine_wav, uv, noise | |
class SineGen(torch.nn.Module): | |
""" Definition of sine generator | |
SineGen(samp_rate, harmonic_num = 0, | |
sine_amp = 0.1, noise_std = 0.003, | |
voiced_threshold = 0, | |
flag_for_pulse=False) | |
samp_rate: sampling rate in Hz | |
harmonic_num: number of harmonic overtones (default 0) | |
sine_amp: amplitude of sine-wavefrom (default 0.1) | |
noise_std: std of Gaussian noise (default 0.003) | |
voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
Note: when flag_for_pulse is True, the first time step of a voiced | |
segment is always sin(np.pi) or cos(0) | |
""" | |
def __init__(self, samp_rate, harmonic_num=0, | |
sine_amp=0.1, noise_std=0.003, | |
voiced_threshold=0, | |
flag_for_pulse=False): | |
super(SineGen, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = noise_std | |
self.harmonic_num = harmonic_num | |
self.dim = self.harmonic_num + 1 | |
self.sampling_rate = samp_rate | |
self.voiced_threshold = voiced_threshold | |
self.flag_for_pulse = flag_for_pulse | |
def _f02uv(self, f0): | |
# generate uv signal | |
uv = torch.ones_like(f0) | |
uv = uv * (f0 > self.voiced_threshold) | |
return uv | |
def _f02sine(self, f0_values): | |
""" f0_values: (batchsize, length, dim) | |
where dim indicates fundamental tone and overtones | |
""" | |
# convert to F0 in rad. The interger part n can be ignored | |
# because 2 * np.pi * n doesn't affect phase | |
rad_values = (f0_values / self.sampling_rate) % 1 | |
# initial phase noise (no noise for fundamental component) | |
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \ | |
device=f0_values.device) | |
rand_ini[:, 0] = 0 | |
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
if not self.flag_for_pulse: | |
# for normal case | |
# To prevent torch.cumsum numerical overflow, | |
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1. | |
# Buffer tmp_over_one_idx indicates the time step to add -1. | |
# This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi | |
tmp_over_one = torch.cumsum(rad_values, 1) % 1 | |
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - | |
tmp_over_one[:, :-1, :]) < 0 | |
cumsum_shift = torch.zeros_like(rad_values) | |
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 | |
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) | |
* 2 * np.pi) | |
else: | |
# If necessary, make sure that the first time step of every | |
# voiced segments is sin(pi) or cos(0) | |
# This is used for pulse-train generation | |
# identify the last time step in unvoiced segments | |
uv = self._f02uv(f0_values) | |
uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
uv_1[:, -1, :] = 1 | |
u_loc = (uv < 1) * (uv_1 > 0) | |
# get the instantanouse phase | |
tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
# different batch needs to be processed differently | |
for idx in range(f0_values.shape[0]): | |
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
# stores the accumulation of i.phase within | |
# each voiced segments | |
tmp_cumsum[idx, :, :] = 0 | |
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
# rad_values - tmp_cumsum: remove the accumulation of i.phase | |
# within the previous voiced segment. | |
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
# get the sines | |
sines = torch.cos(i_phase * 2 * np.pi) | |
return sines | |
def forward(self, f0): | |
""" sine_tensor, uv = forward(f0) | |
input F0: tensor(batchsize=1, length, dim=1) | |
f0 for unvoiced steps should be 0 | |
output sine_tensor: tensor(batchsize=1, length, dim) | |
output uv: tensor(batchsize=1, length, 1) | |
""" | |
with torch.no_grad(): | |
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, \ | |
device=f0.device) | |
# fundamental component | |
f0_buf[:, :, 0] = f0[:, :, 0] | |
for idx in np.arange(self.harmonic_num): | |
# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic | |
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2) | |
# generate sine waveforms | |
sine_waves = self._f02sine(f0_buf) * self.sine_amp | |
# generate uv signal | |
# uv = torch.ones(f0.shape) | |
# uv = uv * (f0 > self.voiced_threshold) | |
uv = self._f02uv(f0) | |
# noise: for unvoiced should be similar to sine_amp | |
# std = self.sine_amp/3 -> max value ~ self.sine_amp | |
# . for voiced regions is self.noise_std | |
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
noise = noise_amp * torch.randn_like(sine_waves) | |
# first: set the unvoiced part to 0 by uv | |
# then: additive noise | |
sine_waves = sine_waves * uv + noise | |
return sine_waves, uv, noise | |
class SourceModuleCycNoise_v1(torch.nn.Module): | |
""" SourceModuleCycNoise_v1 | |
SourceModule(sampling_rate, noise_std=0.003, voiced_threshod=0) | |
sampling_rate: sampling_rate in Hz | |
noise_std: std of Gaussian noise (default: 0.003) | |
voiced_threshold: threshold to set U/V given F0 (default: 0) | |
cyc, noise, uv = SourceModuleCycNoise_v1(F0_upsampled, beta) | |
F0_upsampled (batchsize, length, 1) | |
beta (1) | |
cyc (batchsize, length, 1) | |
noise (batchsize, length, 1) | |
uv (batchsize, length, 1) | |
""" | |
def __init__(self, sampling_rate, noise_std=0.003, voiced_threshod=0): | |
super(SourceModuleCycNoise_v1, self).__init__() | |
self.sampling_rate = sampling_rate | |
self.noise_std = noise_std | |
self.l_cyc_gen = CyclicNoiseGen_v1(sampling_rate, noise_std, | |
voiced_threshod) | |
def forward(self, f0_upsamped, beta): | |
""" | |
cyc, noise, uv = SourceModuleCycNoise_v1(F0, beta) | |
F0_upsampled (batchsize, length, 1) | |
beta (1) | |
cyc (batchsize, length, 1) | |
noise (batchsize, length, 1) | |
uv (batchsize, length, 1) | |
""" | |
# source for harmonic branch | |
cyc, pulse, sine, uv, add_noi = self.l_cyc_gen(f0_upsamped, beta) | |
# source for noise branch, in the same shape as uv | |
noise = torch.randn_like(uv) * self.noise_std / 3 | |
return cyc, noise, uv | |
class SourceModuleHnNSF(torch.nn.Module): | |
""" SourceModule for hn-nsf | |
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0) | |
sampling_rate: sampling_rate in Hz | |
harmonic_num: number of harmonic above F0 (default: 0) | |
sine_amp: amplitude of sine source signal (default: 0.1) | |
add_noise_std: std of additive Gaussian noise (default: 0.003) | |
note that amplitude of noise in unvoiced is decided | |
by sine_amp | |
voiced_threshold: threhold to set U/V given F0 (default: 0) | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
uv (batchsize, length, 1) | |
""" | |
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1, | |
add_noise_std=0.003, voiced_threshod=0): | |
super(SourceModuleHnNSF, self).__init__() | |
self.sine_amp = sine_amp | |
self.noise_std = add_noise_std | |
# to produce sine waveforms | |
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, | |
sine_amp, add_noise_std, voiced_threshod) | |
# to merge source harmonics into a single excitation | |
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = torch.nn.Tanh() | |
def forward(self, x): | |
""" | |
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
F0_sampled (batchsize, length, 1) | |
Sine_source (batchsize, length, 1) | |
noise_source (batchsize, length 1) | |
""" | |
# source for harmonic branch | |
sine_wavs, uv, _ = self.l_sin_gen(x) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
# source for noise branch, in the same shape as uv | |
noise = torch.randn_like(uv) * self.sine_amp / 3 | |
return sine_merge, noise, uv | |
if __name__ == '__main__': | |
source = SourceModuleCycNoise_v1(24000) | |
x = torch.randn(16, 25600, 1) | |