ddd
Add application file
b93970c
raw
history blame
21.3 kB
import torch
import numpy as np
import sys
import torch.nn.functional as torch_nn_func
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0_values):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# for normal case
# To prevent torch.cumsum numerical overflow,
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# Buffer tmp_over_one_idx indicates the time step to add -1.
# This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
tmp_over_one = torch.cumsum(rad_values, 1) % 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] -
tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
* 2 * np.pi)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
with torch.no_grad():
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)
# generate sine waveforms
sine_waves = self._f02sine(f0_buf) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class PulseGen(torch.nn.Module):
""" Definition of Pulse train generator
There are many ways to implement pulse generator.
Here, PulseGen is based on SinGen. For a perfect
"""
def __init__(self, samp_rate, pulse_amp = 0.1,
noise_std = 0.003, voiced_threshold = 0):
super(PulseGen, self).__init__()
self.pulse_amp = pulse_amp
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.noise_std = noise_std
self.l_sinegen = SineGen(self.sampling_rate, harmonic_num=0, \
sine_amp=self.pulse_amp, noise_std=0, \
voiced_threshold=self.voiced_threshold, \
flag_for_pulse=True)
def forward(self, f0):
""" Pulse train generator
pulse_train, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output pulse_train: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
Note: self.l_sine doesn't make sure that the initial phase of
a voiced segment is np.pi, the first pulse in a voiced segment
may not be at the first time step within a voiced segment
"""
with torch.no_grad():
sine_wav, uv, noise = self.l_sinegen(f0)
# sine without additive noise
pure_sine = sine_wav - noise
# step t corresponds to a pulse if
# sine[t] > sine[t+1] & sine[t] > sine[t-1]
# & sine[t-1], sine[t+1], and sine[t] are voiced
# or
# sine[t] is voiced, sine[t-1] is unvoiced
# we use torch.roll to simulate sine[t+1] and sine[t-1]
sine_1 = torch.roll(pure_sine, shifts=1, dims=1)
uv_1 = torch.roll(uv, shifts=1, dims=1)
uv_1[:, 0, :] = 0
sine_2 = torch.roll(pure_sine, shifts=-1, dims=1)
uv_2 = torch.roll(uv, shifts=-1, dims=1)
uv_2[:, -1, :] = 0
loc = (pure_sine > sine_1) * (pure_sine > sine_2) \
* (uv_1 > 0) * (uv_2 > 0) * (uv > 0) \
+ (uv_1 < 1) * (uv > 0)
# pulse train without noise
pulse_train = pure_sine * loc
# additive noise to pulse train
# note that noise from sinegen is zero in voiced regions
pulse_noise = torch.randn_like(pure_sine) * self.noise_std
# with additive noise on pulse, and unvoiced regions
pulse_train += pulse_noise * loc + pulse_noise * (1 - uv)
return pulse_train, sine_wav, uv, pulse_noise
class SignalsConv1d(torch.nn.Module):
""" Filtering input signal with time invariant filter
Note: FIRFilter conducted filtering given fixed FIR weight
SignalsConv1d convolves two signals
Note: this is based on torch.nn.functional.conv1d
"""
def __init__(self):
super(SignalsConv1d, self).__init__()
def forward(self, signal, system_ir):
""" output = forward(signal, system_ir)
signal: (batchsize, length1, dim)
system_ir: (length2, dim)
output: (batchsize, length1, dim)
"""
if signal.shape[-1] != system_ir.shape[-1]:
print("Error: SignalsConv1d expects shape:")
print("signal (batchsize, length1, dim)")
print("system_id (batchsize, length2, dim)")
print("But received signal: {:s}".format(str(signal.shape)))
print(" system_ir: {:s}".format(str(system_ir.shape)))
sys.exit(1)
padding_length = system_ir.shape[0] - 1
groups = signal.shape[-1]
# pad signal on the left
signal_pad = torch_nn_func.pad(signal.permute(0, 2, 1), \
(padding_length, 0))
# prepare system impulse response as (dim, 1, length2)
# also flip the impulse response
ir = torch.flip(system_ir.unsqueeze(1).permute(2, 1, 0), \
dims=[2])
# convolute
output = torch_nn_func.conv1d(signal_pad, ir, groups=groups)
return output.permute(0, 2, 1)
class CyclicNoiseGen_v1(torch.nn.Module):
""" CyclicnoiseGen_v1
Cyclic noise with a single parameter of beta.
Pytorch v1 implementation assumes f_t is also fixed
"""
def __init__(self, samp_rate,
noise_std=0.003, voiced_threshold=0):
super(CyclicNoiseGen_v1, self).__init__()
self.samp_rate = samp_rate
self.noise_std = noise_std
self.voiced_threshold = voiced_threshold
self.l_pulse = PulseGen(samp_rate, pulse_amp=1.0,
noise_std=noise_std,
voiced_threshold=voiced_threshold)
self.l_conv = SignalsConv1d()
def noise_decay(self, beta, f0mean):
""" decayed_noise = noise_decay(beta, f0mean)
decayed_noise = n[t]exp(-t * f_mean / beta / samp_rate)
beta: (dim=1) or (batchsize=1, 1, dim=1)
f0mean (batchsize=1, 1, dim=1)
decayed_noise (batchsize=1, length, dim=1)
"""
with torch.no_grad():
# exp(-1.0 n / T) < 0.01 => n > -log(0.01)*T = 4.60*T
# truncate the noise when decayed by -40 dB
length = 4.6 * self.samp_rate / f0mean
length = length.int()
time_idx = torch.arange(0, length, device=beta.device)
time_idx = time_idx.unsqueeze(0).unsqueeze(2)
time_idx = time_idx.repeat(beta.shape[0], 1, beta.shape[2])
noise = torch.randn(time_idx.shape, device=beta.device)
# due to Pytorch implementation, use f0_mean as the f0 factor
decay = torch.exp(-time_idx * f0mean / beta / self.samp_rate)
return noise * self.noise_std * decay
def forward(self, f0s, beta):
""" Producde cyclic-noise
"""
# pulse train
pulse_train, sine_wav, uv, noise = self.l_pulse(f0s)
pure_pulse = pulse_train - noise
# decayed_noise (length, dim=1)
if (uv < 1).all():
# all unvoiced
cyc_noise = torch.zeros_like(sine_wav)
else:
f0mean = f0s[uv > 0].mean()
decayed_noise = self.noise_decay(beta, f0mean)[0, :, :]
# convolute
cyc_noise = self.l_conv(pure_pulse, decayed_noise)
# add noise in invoiced segments
cyc_noise = cyc_noise + noise * (1.0 - uv)
return cyc_noise, pulse_train, sine_wav, uv, noise
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0,
flag_for_pulse=False):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.dim = self.harmonic_num + 1
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
self.flag_for_pulse = flag_for_pulse
def _f02uv(self, f0):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
return uv
def _f02sine(self, f0_values):
""" f0_values: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
# convert to F0 in rad. The interger part n can be ignored
# because 2 * np.pi * n doesn't affect phase
rad_values = (f0_values / self.sampling_rate) % 1
# initial phase noise (no noise for fundamental component)
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
device=f0_values.device)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
if not self.flag_for_pulse:
# for normal case
# To prevent torch.cumsum numerical overflow,
# it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
# Buffer tmp_over_one_idx indicates the time step to add -1.
# This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
tmp_over_one = torch.cumsum(rad_values, 1) % 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] -
tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
* 2 * np.pi)
else:
# If necessary, make sure that the first time step of every
# voiced segments is sin(pi) or cos(0)
# This is used for pulse-train generation
# identify the last time step in unvoiced segments
uv = self._f02uv(f0_values)
uv_1 = torch.roll(uv, shifts=-1, dims=1)
uv_1[:, -1, :] = 1
u_loc = (uv < 1) * (uv_1 > 0)
# get the instantanouse phase
tmp_cumsum = torch.cumsum(rad_values, dim=1)
# different batch needs to be processed differently
for idx in range(f0_values.shape[0]):
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
# stores the accumulation of i.phase within
# each voiced segments
tmp_cumsum[idx, :, :] = 0
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
# rad_values - tmp_cumsum: remove the accumulation of i.phase
# within the previous voiced segment.
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
# get the sines
sines = torch.cos(i_phase * 2 * np.pi)
return sines
def forward(self, f0):
""" sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
output sine_tensor: tensor(batchsize=1, length, dim)
output uv: tensor(batchsize=1, length, 1)
"""
with torch.no_grad():
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, \
device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)
# generate sine waveforms
sine_waves = self._f02sine(f0_buf) * self.sine_amp
# generate uv signal
# uv = torch.ones(f0.shape)
# uv = uv * (f0 > self.voiced_threshold)
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleCycNoise_v1(torch.nn.Module):
""" SourceModuleCycNoise_v1
SourceModule(sampling_rate, noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
noise_std: std of Gaussian noise (default: 0.003)
voiced_threshold: threshold to set U/V given F0 (default: 0)
cyc, noise, uv = SourceModuleCycNoise_v1(F0_upsampled, beta)
F0_upsampled (batchsize, length, 1)
beta (1)
cyc (batchsize, length, 1)
noise (batchsize, length, 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, noise_std=0.003, voiced_threshod=0):
super(SourceModuleCycNoise_v1, self).__init__()
self.sampling_rate = sampling_rate
self.noise_std = noise_std
self.l_cyc_gen = CyclicNoiseGen_v1(sampling_rate, noise_std,
voiced_threshod)
def forward(self, f0_upsamped, beta):
"""
cyc, noise, uv = SourceModuleCycNoise_v1(F0, beta)
F0_upsampled (batchsize, length, 1)
beta (1)
cyc (batchsize, length, 1)
noise (batchsize, length, 1)
uv (batchsize, length, 1)
"""
# source for harmonic branch
cyc, pulse, sine, uv, add_noi = self.l_cyc_gen(f0_upsamped, beta)
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.noise_std / 3
return cyc, noise, uv
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
sine_wavs, uv, _ = self.l_sin_gen(x)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
if __name__ == '__main__':
source = SourceModuleCycNoise_v1(24000)
x = torch.randn(16, 25600, 1)