Spaces:
Runtime error
Runtime error
import logging | |
from typing import Any, Dict, Iterator, List, Optional | |
from pydantic import Field, root_validator | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from langchain.llms.base import LLM | |
from langchain.schema.output import GenerationChunk | |
logger = logging.getLogger(__name__) | |
class LlamaCpp(LLM): | |
"""llama.cpp model. | |
To use, you should have the llama-cpp-python library installed, and provide the | |
path to the Llama model as a named parameter to the constructor. | |
Check out: https://github.com/abetlen/llama-cpp-python | |
Example: | |
.. code-block:: python | |
from langchain.llms import LlamaCpp | |
llm = LlamaCpp(model_path="/path/to/llama/model") | |
""" | |
client: Any #: :meta private: | |
model_path: str | |
"""The path to the Llama model file.""" | |
lora_base: Optional[str] = None | |
"""The path to the Llama LoRA base model.""" | |
lora_path: Optional[str] = None | |
"""The path to the Llama LoRA. If None, no LoRa is loaded.""" | |
n_ctx: int = Field(512, alias="n_ctx") | |
"""Token context window.""" | |
n_parts: int = Field(-1, alias="n_parts") | |
"""Number of parts to split the model into. | |
If -1, the number of parts is automatically determined.""" | |
seed: int = Field(-1, alias="seed") | |
"""Seed. If -1, a random seed is used.""" | |
f16_kv: bool = Field(True, alias="f16_kv") | |
"""Use half-precision for key/value cache.""" | |
logits_all: bool = Field(False, alias="logits_all") | |
"""Return logits for all tokens, not just the last token.""" | |
vocab_only: bool = Field(False, alias="vocab_only") | |
"""Only load the vocabulary, no weights.""" | |
use_mlock: bool = Field(False, alias="use_mlock") | |
"""Force system to keep model in RAM.""" | |
n_threads: Optional[int] = Field(None, alias="n_threads") | |
"""Number of threads to use. | |
If None, the number of threads is automatically determined.""" | |
n_batch: Optional[int] = Field(8, alias="n_batch") | |
"""Number of tokens to process in parallel. | |
Should be a number between 1 and n_ctx.""" | |
n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers") | |
"""Number of layers to be loaded into gpu memory. Default None.""" | |
suffix: Optional[str] = Field(None) | |
"""A suffix to append to the generated text. If None, no suffix is appended.""" | |
max_tokens: Optional[int] = 256 | |
"""The maximum number of tokens to generate.""" | |
temperature: Optional[float] = 0.8 | |
"""The temperature to use for sampling.""" | |
top_p: Optional[float] = 0.95 | |
"""The top-p value to use for sampling.""" | |
logprobs: Optional[int] = Field(None) | |
"""The number of logprobs to return. If None, no logprobs are returned.""" | |
echo: Optional[bool] = False | |
"""Whether to echo the prompt.""" | |
stop: Optional[List[str]] = [] | |
"""A list of strings to stop generation when encountered.""" | |
repeat_penalty: Optional[float] = 1.1 | |
"""The penalty to apply to repeated tokens.""" | |
top_k: Optional[int] = 40 | |
"""The top-k value to use for sampling.""" | |
last_n_tokens_size: Optional[int] = 64 | |
"""The number of tokens to look back when applying the repeat_penalty.""" | |
use_mmap: Optional[bool] = True | |
"""Whether to keep the model loaded in RAM""" | |
rope_freq_scale: float = 1.0 | |
"""Scale factor for rope sampling.""" | |
rope_freq_base: float = 10000.0 | |
"""Base frequency for rope sampling.""" | |
streaming: bool = True | |
"""Whether to stream the results, token by token.""" | |
verbose: bool = True | |
"""Print verbose output to stderr.""" | |
n_gqa: Optional[int] = None | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that llama-cpp-python library is installed.""" | |
model_path = values["model_path"] | |
model_param_names = [ | |
"n_gqa", | |
"rope_freq_scale", | |
"rope_freq_base", | |
"lora_path", | |
"lora_base", | |
"n_ctx", | |
"n_parts", | |
"seed", | |
"f16_kv", | |
"logits_all", | |
"vocab_only", | |
"use_mlock", | |
"n_threads", | |
"n_batch", | |
"use_mmap", | |
"last_n_tokens_size", | |
"verbose", | |
] | |
model_params = {k: values[k] for k in model_param_names} | |
model_params['n_gqa'] = 8 if '70B' in model_path.upper() else None # (TEMPORARY) must be 8 for llama2 70b | |
# For backwards compatibility, only include if non-null. | |
if values["n_gpu_layers"] is not None: | |
model_params["n_gpu_layers"] = values["n_gpu_layers"] | |
try: | |
from llama_cpp import Llama | |
values["client"] = Llama(model_path, **model_params) | |
except ImportError: | |
raise ImportError( | |
"Could not import llama-cpp-python library. " | |
"Please install the llama-cpp-python library to " | |
"use this embedding model: pip install llama-cpp-python" | |
) | |
except Exception as e: | |
raise ValueError( | |
f"Could not load Llama model from path: {model_path}. " | |
f"Received error {e}" | |
) | |
return values | |
def _default_params(self) -> Dict[str, Any]: | |
"""Get the default parameters for calling llama_cpp.""" | |
return { | |
"suffix": self.suffix, | |
"max_tokens": self.max_tokens, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"logprobs": self.logprobs, | |
"echo": self.echo, | |
"stop_sequences": self.stop, # key here is convention among LLM classes | |
"repeat_penalty": self.repeat_penalty, | |
"top_k": self.top_k, | |
} | |
def _identifying_params(self) -> Dict[str, Any]: | |
"""Get the identifying parameters.""" | |
return {**{"model_path": self.model_path}, **self._default_params} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "llamacpp" | |
def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]: | |
""" | |
Performs sanity check, preparing parameters in format needed by llama_cpp. | |
Args: | |
stop (Optional[List[str]]): List of stop sequences for llama_cpp. | |
Returns: | |
Dictionary containing the combined parameters. | |
""" | |
# Raise error if stop sequences are in both input and default params | |
if self.stop and stop is not None: | |
raise ValueError("`stop` found in both the input and default params.") | |
params = self._default_params | |
# llama_cpp expects the "stop" key not this, so we remove it: | |
params.pop("stop_sequences") | |
# then sets it as configured, or default to an empty list: | |
params["stop"] = self.stop or stop or [] | |
return params | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Call the Llama model and return the output. | |
Args: | |
prompt: The prompt to use for generation. | |
stop: A list of strings to stop generation when encountered. | |
Returns: | |
The generated text. | |
Example: | |
.. code-block:: python | |
from langchain.llms import LlamaCpp | |
llm = LlamaCpp(model_path="/path/to/local/llama/model.bin") | |
llm("This is a prompt.") | |
""" | |
if self.streaming: | |
# If streaming is enabled, we use the stream | |
# method that yields as they are generated | |
# and return the combined strings from the first choices's text: | |
combined_text_output = "" | |
for chunk in self._stream( | |
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs | |
): | |
combined_text_output += chunk.text | |
return combined_text_output | |
else: | |
params = self._get_parameters(stop) | |
params = {**params, **kwargs} | |
result = self.client(prompt=prompt, **params) | |
return result["choices"][0]["text"] | |
def _stream( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> Iterator[GenerationChunk]: | |
"""Yields results objects as they are generated in real time. | |
It also calls the callback manager's on_llm_new_token event with | |
similar parameters to the OpenAI LLM class method of the same name. | |
Args: | |
prompt: The prompts to pass into the model. | |
stop: Optional list of stop words to use when generating. | |
Returns: | |
A generator representing the stream of tokens being generated. | |
Yields: | |
A dictionary like objects containing a string token and metadata. | |
See llama-cpp-python docs and below for more. | |
Example: | |
.. code-block:: python | |
from langchain.llms import LlamaCpp | |
llm = LlamaCpp( | |
model_path="/path/to/local/model.bin", | |
temperature = 0.5 | |
) | |
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'", | |
stop=["'","\n"]): | |
result = chunk["choices"][0] | |
print(result["text"], end='', flush=True) | |
""" | |
params = {**self._get_parameters(stop), **kwargs} | |
result = self.client(prompt=prompt, stream=True, **params) | |
for part in result: | |
logprobs = part["choices"][0].get("logprobs", None) | |
chunk = GenerationChunk( | |
text=part["choices"][0]["text"], | |
generation_info={"logprobs": logprobs}, | |
) | |
yield chunk | |
if run_manager: | |
run_manager.on_llm_new_token( | |
token=chunk.text, verbose=self.verbose, log_probs=logprobs | |
) | |
def get_num_tokens(self, text: str) -> int: | |
tokenized_text = self.client.tokenize(text.encode("utf-8")) | |
return len(tokenized_text) | |